Issue 28, 2020

Properties of multifunctional composite materials based on nanomaterials: a review

Abstract

Composite materials are being used for high-end applications such as aviation technology, space ships, and heavy equipment manufacturing. The use of composite materials has been observed in recent advancements in the field of multifunctional composite materials (MFCMs). There is continuous progress related to improvements, innovations, and replacement of metals inspite of rigorous destructive and non-destructive testing, proving the toughness and lifelong durability of such materials. The present study aims to review the topics relevant to modern multifunctional composite materials. The reviewed articles mostly cover the field of MFCMs based on nanomaterials. The structural functions emphasize on the mechanical properties such as fracture toughness, strength, thermal stability, damping, stiffness, and tensile strength. The non-structural properties include biodegradability, thermal conductivity, electrical conductivity, and electromagnetic interference (EMI) shielding. The study has concluded that the applications of multifunctional nanoparticle-based composite materials and structures include durable but light-weight aircraft wings, components and structures of electric self-driving vehicles, and biomedical composite materials for drug delivery.

Graphical abstract: Properties of multifunctional composite materials based on nanomaterials: a review

Article information

Article type
Review Article
Submitted
16 Dec 2019
Accepted
11 Feb 2020
First published
24 Apr 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 16390-16403

Properties of multifunctional composite materials based on nanomaterials: a review

A. Ali and A. Andriyana, RSC Adv., 2020, 10, 16390 DOI: 10.1039/C9RA10594H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements