Issue 23, 1997

Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes

Abstract

Proton and lithium ion conducting polymer electrolytes, based on poly(vinyl alcohol)–H3PO4 and poly(ethylene oxide)–LiCF3SO3 plasticised with poly(ethylene glycol), have been used in the construction of electric double layer capacitors with both high density graphite sheet and activated carbon fabric electrodes. The polymer electrolytes have room temperature ionic conductivities (ca. 10−4–10−3 S cm−1) that make them suitable for use in thin-film form in devices. The performance characteristics of the capacitors have been studied using impedance analysis, linear-sweep voltammetry and charge–discharge methods. The supercapacitors based on the activated carbon fabric have characteristically large values of overall capacitance of 360–470 mF cm−2 [equivalent to single electrode capacitance 70–90 F (g carbon)−1] with the proton conducting electrolyte. Systems based on lithium ion conducting polymer electrolytes, however, have a much lower capacitance of ca. 20 mF cm−2 (equivalent to a single electrode capacitance of ca. 4 F g−1).

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1997,93, 4177-4182

Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes

S. A. Hashmi, R. J. Latham, R. G. Linford and W. S. Schlindwein, J. Chem. Soc., Faraday Trans., 1997, 93, 4177 DOI: 10.1039/A704661H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements