Issue 6, 1998

Development of a biparametric bioanalyser for creatinine and urea. Validation of the determination of biochemical parameters associated with hemodialysis

Abstract

The construction and evaluation of an automated urea and creatinine biparametric biosystem using flow injection analysis (FIA) are described. The biosystem uses enzyme reactions that hydrolyse urea and creatinine producing ammonium ions. The enzymes used were creatinine deiminase and urease, which are immobilized covalently in flow reactors. The reactor with creatinine deiminase has the enzyme immobilized on controlled-pore glass beads, whereas urease is immobilized on a nylon open tubular reactor. Detection is realised with a flow-through ammonium ion-selective electrode with an inner solid-state contact (graphite–epoxy composite). Ammonium ions are separated from alkali ion interferents through a gas-diffusion cell. The bioanalyser is fully automated using software and electronics developed ex profeso in our laboratories. The analyser was validated off-line by measuring urea and creatinine from discrete effluent samples from hemodialysis equipment. Results agreed with concurrent analyses realised using hospital laboratory methods. There were no significant differences between the two sets of results at the 95% confidence level. Finally, the biparametric bioanalyser was validated on-line by measuring creatinine and urea levels in artificial kidney effluents. These measurements were useful in the determination of key biochemical parameters of clinical interest such as the mass of urea and creatinine extracted from the patient as well as the initial concentration of creatinine and urea in blood plasma. When the results of the bioanalyser were compared with those yielded by the usual methods, they showed no significant differences at the 95% confidence level when determining the mass of the analytes extracted by the hemodialyser or when determining the urea concentration in blood plasma. However, when measuring the creatinine concentration in blood plasma using the developed bioanalyser, significant differences appeared.

Article information

Article type
Paper

Analyst, 1998,123, 1321-1327

Development of a biparametric bioanalyser for creatinine and urea. Validation of the determination of biochemical parameters associated with hemodialysis

M. Jurkiewicz, S. Alegret, J. Almirall, M. García and E. Fàbregas, Analyst, 1998, 123, 1321 DOI: 10.1039/A801672K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements