Issue 11, 2000

Abstract

The morphological and structural features of WS2 nanotubes, generated from WOx (x ≅ 2.7) needles, by an in-situ heating process, have been studied by electron microscopy and X-ray diffraction (XRD), in conjunction with computer simulation. The results show that these inorganic fullerene nanotubes exhibit interesting differences when compared with carbon nanotubes (CNTs). In some cases the tube tips or segments are open. Occasionally the tube walls may be uneven. The sulfur distribution within the tubes is uniform, except for the edge layers which appear to contain less sulfur. Defects are often observed, particularly in the outer shells, which may be due to defective encapsulated WOx phases. Octagonal and square-like defects appear to be associated with the closure of tube caps. Electron diffraction (ED) reveals that nearly half of the non-helical WS2 nanotubes are of the armchair-type. A mechanism has been proposed to account for the extended inorganic nanotube growth.

Article information

Article type
Paper
Submitted
02 Jun 2000
Accepted
17 Aug 2000
First published
21 Sep 2000

J. Mater. Chem., 2000,10, 2570-2577

Morphology, structure and growth of WS2 nanotubes

Y. Q. Zhu, W. K. Hsu, H. Terrones, N. Grobert, B. H. Chang, M. Terrones, B. Q. Wei, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, I. Kinloch, G. Z. Chen, A. H. Windle and D. J. Fray, J. Mater. Chem., 2000, 10, 2570 DOI: 10.1039/B004433O

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements