Issue 12, 2002

Space-resolved fluorescence properties of phenolphthalein-hydrotalcite nanocomposites

Abstract

Phenolphthalein has been included into Zn–Al hydrotalcite-like compounds by taking advantage of the “memory effect” of hydrotalcites. In particular [Zn0.65Al0.35(OH)2] (CO3)0.1750.5H2O was calcined at 500 °C and the obtained mixture of Zn and Al oxides was dispersed in an aqueous alcohol solution containing 7 × 10−2 mol dm−3 phenolphthalein. The reconstruction of the layered hydrotalcite structure in the presence of the dye yielded formation of the composites in which phenolphthalein is intercalated in the interlayer region and/or adsorbed on the layer surface. Two samples were studied, the first, obtained at 25 °C, contained 0.17 mmol g−1 of phenolphthalein, mainly adsorbed on the surface, the second, obtained at 60 °C, contained 0.3 mmol g−1, in part intercalated. The samples were characterized by their X-ray diffraction patterns, specific surface areas and scanning electron micrographs. The photophysical characterisation of the bulk samples was based on the determination of their reflectance absorption and fluorescence spectra, the fluorescence lifetimes and fluorescence anisotropy. The results indicated different properties of the lowest singlet excited state of the adsorbed and intercalated dye. The space-resolved fluorescence images and fluorescence spectra obtained by confocal fluorescence spectroscopy of the two samples gave valuable information on the dye distribution and on the nature of the interactions between the dye and the inorganic matrix.

Article information

Article type
Paper
Submitted
31 Jan 2002
Accepted
15 Mar 2002
First published
07 May 2002

Phys. Chem. Chem. Phys., 2002,4, 2792-2798

Space-resolved fluorescence properties of phenolphthalein-hydrotalcite nanocomposites

L. Latterini, F. Elisei, G. G. Aloisi, U. Costantino and M. Nocchetti, Phys. Chem. Chem. Phys., 2002, 4, 2792 DOI: 10.1039/B201167K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements