Skip to main content
Log in

Lanthanide complexes of polycarboxylate-bearing dipyrazolylpyridine ligands with near-unity luminescence quantum yields: the effect of pyridine substitution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The title complexes displayed a marked dependence of their luminescence properties upon pyridine substitution. The ligand with the 4-carbamoyl-substituted pyridine showed a long-lived luminescence of near-unity quantum yield for Tb3+ and quite reasonable values for Eu3+, Sm3+ and Dy3+, thus making it an excellent candidate for a luminescent probe to be attached to biomolecules by a peptide-like linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Remuiñán, H. Román, M. T. Alonso and J. C. Rodríguez-Ubis, Synthesis and luminescence properties of europium(iii) and terbium(iii) complexes with polyacid chelates derived from 2,6-bis(N-pyrazolyl)pyridine, J. Chem. Soc., Perkin Trans. 2, 1993, 1099.

    Google Scholar 

  2. J. C. Rodríguez-Ubis, R. Sedano, G. Barroso, O. Juanes and E. Brunet, Lanthanide complexes of polyacid ligands derived from 2,6-bis(pyrazol-1-yl)pyridine, -pyrazine, and 6,6’-bis(pyrazol-1-yl)-2,2’-bipyridine. Synthesis and luminescence properties, Helv. Chim. Acta, 1997, 80, 86.

    Article  Google Scholar 

  3. H. Takalo, V. M. Mukkala, L. Meriö, J. C. Rodríguez-Ubis, R. Sedano, O. Juanes and E. Brunet, Development of luminescent terbium(iii) chelates for protein labeling. Effect of triplet-state energy level, Helv. Chim. Acta, 1997, 80, 372.

    Article  CAS  Google Scholar 

  4. E. Brunet, M. T. Alonso, O. Juanes, R. Sedano and J. C. Rodríguez-Ubis, Unusual behavior of 7-diethylamino-3-(3,4-ethylenedioxybenzoyl)coumarin towards group IIA cations: a potential photoactive probe for magnesium, Tetrahedron Lett., 1997, 38, 4459–4462.

    Article  CAS  Google Scholar 

  5. J. C. Rodríguez-Ubis, M. T. Alonso, O. Juanes, R. Sedano and E. Brunet, The discovery of a simple ligand based on acetophenone bearing excellent quantum yields for the excitation of Eu3+ and Tb3+, J. Lumin., 1998, 79, 121–125.

    Article  Google Scholar 

  6. J. Azéma, C. Galaup, C. Picard, P. Tisnès, P. Ramos, O. Juanes, J. C. Rodríguez-Ubis and E. Brunet, New macrobicycles containing a tetralactam moiety: template synthesis and study of their binding with lanthanides, Tetrahedron, 2000, 56, 2673–2681.

    Article  Google Scholar 

  7. J. C. Rodríguez-Ubis, M. T. Alonso, O. Juanes and E. Brunet, Luminescent cryptands. 3-aroylcoumarin macrobicyclic complexes of europium(iii) and terbium(iii): the effect of coumarin substitution, Luminescence, 2000, 15, 331–340.

    Article  Google Scholar 

  8. J. C. Rodríguez-Ubis, M. T. Alonso, O. Juanes O. Velasco and E. Brunet, Novel polyaminocarboxylate chelates derived from 3-aroylcoumarins, Tetrahedron, 2001, 57, 3105–3116.

    Article  Google Scholar 

  9. E. Brunet, P. García-Losada, O. Juanes and J. C. Rodríguez-Ubis, Synthesis of new fluorophores derived from monoazacrown ethers and coumarin nucleus, Can. J. Chem., 2002, 80, 169–174.

    Article  CAS  Google Scholar 

  10. M. T. Alonso, E. Brunet, O. Juanes and J. C. Rodríguez-Ubis, Synthesis and photochemical properties of new coumarin-derived ionophores and their alkaline-earth and lanthanide complexes, J. Photochem. Photobiol., A, 2002, 147, 113–125.

    Article  CAS  Google Scholar 

  11. J. Yuan, G. Wang, K. Majima and K. Matsumoto, Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay, Anal. Chem., 2001, 73, 1869–1876.

    Article  CAS  Google Scholar 

  12. U. Newmann and F. Vögtle, 4,4’-Donor-substituted and 6,6’-difunctionalized 2,2’-bipyridines, Chem. Ber., 1989, 122, 589.

    Article  Google Scholar 

  13. K. Abe, Y. Kitagawa and A. Ishimura, Synthesis of isonicotinic acid, J. Pharm. Soc. Jpn., 1953, 73, 969.

    Article  CAS  Google Scholar 

  14. J. A. Bishop, Use of fluorescence in determining formation constants of complexes. II. Complexes which fluoresce, Anal. Chim. Acta, 1973, 63, 305.

    Article  CAS  Google Scholar 

  15. B. H. Bakker, M. Goes, N. Hoebe, H. J. J. van Ramesdonk, W. Verhoeven, M. H. V. Werts and J. W. Hosftraat, Luminescent materials and devices: lanthanide azatriphenylene complexes and electroluminescent charge transfer systems, Coord. Chem. Rev., 2000, 208, 3.

    Article  CAS  Google Scholar 

  16. M. H. V. Werts, J. W. Verhoeven and J. W. Hofstraat, Efficient visible light sensitization of water-soluble near-infrared luminescent lanthanide complexes, J. Chem. Soc., Perkin Trans. 2, 2000, 433.

    Google Scholar 

  17. W. De Horrocks and D. R. Sudnick, Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules, J. Am. Chem. Soc., 1979, 101, 334.

    Article  CAS  Google Scholar 

  18. A. Beddy, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. A. de Sousa, J. A. Gareth-Williams and M. Woods, Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators, an improved luminescence method for establishing solution hydration states, J. Chem. Soc., Perkin Trans. 2, 1999, 493.

    Google Scholar 

  19. T. Kimura and Y. Kato, Luminescence study on hydration states of lanthanide(iii)-polyaminopolycarboxylate complexes in aqueous solution, J. Alloys Compd., 1998, 806.

    Google Scholar 

  20. G. Stein and E. Würzberg, Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions, J. Chem. Phys., 1975, 62, 208.

    Article  CAS  Google Scholar 

  21. Y-Y. Xu, I. Emmilä, V.-M. Mukkala, S. Holttinen and T. Lövgren, Co-fluorescence of europium and samarium in time-resolved fluorometric immunoassays, Analyst, 1991, 116, 1155.

    Article  CAS  Google Scholar 

  22. N. Sabbatini, M. Guardigli and J. M. Lehn, Luminescent lanthanide complexes as photochemical supramolecular devices, Coord. Chem. Rev., 1993, 123, 201.

    Article  CAS  Google Scholar 

  23. E. Brunet, O. Juanes, R. Sedano and J. C. Rodríguez-Ubis, Synthesis of Novel Macrocyclic Lanthanide Chelates Derived from Bis-pyrazolylpyridine, Org. Lett., 2001, 4, 213.

    Article  Google Scholar 

  24. F. J. Steemers, W. Verboom, D. N. Reinhouldt, E. B. van der Tol and J. W. Verhoeven, New Sensitizer-Modified Calix[4]arenes Enabling Near-UV Excitation of Complexed Luminescent Lanthanide Ions, J. Am. Chem. Soc., 1979, 117, 334.

    Google Scholar 

  25. M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu and J. C. Rodríguez-Ubis, Correlation between the lowest triplet state energy level of the ligand and lanthanide(iii) luminescence quantum yield, J. Kankare, J. Lumin., 1997, 75, 149.

    Article  CAS  Google Scholar 

  26. P. J. Sammes and G. Yahioglu, Modern bioassays using metal chelates as luminescent probes, Nat. Prod. Rep., 1996, 1.

    Google Scholar 

  27. W. T. Carnall, in Handbook on the Physics and Chemistry of Rare Earths, eds. K. Gschneidner and L. Eyring, North-Holland, Amsterdam, 1979,, Vol. 3, p. 171.

    Article  CAS  Google Scholar 

  28. C. Galaup, J. Azema, P. Tisnès, C. Picard, P. Ramos, O. Juanes, E. Brunet and J. C. Rodríguez-Ubis, Luminescence of Eu3+ and Tb3+ complexes of two macrobicyclic ligands derived from a tetralactam ring and a chromophoric antenna, Helv. Chim. Acta, in the press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Brunet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, E., Juanes, O., Sedano, R. et al. Lanthanide complexes of polycarboxylate-bearing dipyrazolylpyridine ligands with near-unity luminescence quantum yields: the effect of pyridine substitution. Photochem Photobiol Sci 1, 613–618 (2002). https://doi.org/10.1039/b204544c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b204544c

Navigation