Skip to main content
Log in

Hydrogen peroxide evolution during V-UV photolysis of water

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. See e.g., O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment, Chem. Rev., 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  2. A. M. Braun, M. T. Maurette and E. Oliveros, Photolyse de polluants organiques, Photochimie 94, Suppl. Act. Chim., 1994, 7, 76–78.

    Google Scholar 

  3. M. G. Gonzalez, E. Oliveros, M. Wörner and A. M. Braun, Vacuum-ultraviolet photolysis of aqueous reaction systems, J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5, 225–246.

    Article  CAS  Google Scholar 

  4. J. L. Weeks, G. M. A. C. Meburn and S. Gordon, Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet, Radiat. Res., 1963, 19, 559–567.

    Article  CAS  Google Scholar 

  5. G. Heit and A. M. Braun, V-UV-Photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions, Water Sci. Technol., 1997, 35, 25–30.

    Article  CAS  Google Scholar 

  6. B. Eliason and U. Kogelschatz, UV excimer radiation from dielectric barrier discharges, Appl. Phys. B, 1988, 46, 299–303.

    Article  Google Scholar 

  7. T. Oppenländer, Photochemical Purification of Water and Air, Wiley VCH, Weinheim, 2003.

    Google Scholar 

  8. F. Benoit-Marquié, U. Wilkenhoner, A. M. Braun, E. Oliveros and M. T. Maurette, Lampes à excimère au Xe et XeCl adaptées à la photochimie, applications à la dégradation de matière organique en phase gaz, J. Phys. IV (France), 1999, 9, 113–116.

    Article  Google Scholar 

  9. P. Monneyron, A. De La Guardia, M. H. Manero, E. Oliveros, M. T. Maurette and F. Benoit-Marquié, Co-treatment of industrial air streams using A.O.P. and adsorption processes, Int. J. Photoenergy, 2003, 5, 167–174.

    Article  CAS  Google Scholar 

  10. C. von Sonntag and H.-P. Schuchmann, Pulse radiolysis, Methods Enzymol., 1994, 233, 3–20.

    Article  Google Scholar 

  11. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH˙/O˙) in aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  12. R. A. Holroyd and H. J. Bielski, Photochemical generation of superoxide radicals in aqueous solutions, J. Am. Chem. Soc., 1978, 100, 5796–5800.

    Article  CAS  Google Scholar 

  13. J. P. Sweet and J. K. Thomas, Absolute rate constants for H atom reactions in aqueous solutions, J. Phys. Chem., 1964, 68, 1363.

    Article  CAS  Google Scholar 

  14. H. A. Schwartz, A determination of some rate constants for the radical processes in the radiation chemistry of water, J. Phys. Chem., 1962, 66, 255–262.

    Article  Google Scholar 

  15. G. Heit, A. Neuner, P.-Y. Saugy and A. M. Braun, Vacuum-UV (172 nm) actinometry. The quantum yield of the photolysis of water, J. Phys. Chem. A, 1998, 102, 5551–5561.

    Article  CAS  Google Scholar 

  16. L. Jakob, T. M. Hashem, S. Burki, N. M. Guindy and A. M. Braun, Vacuum-ultraviolet (VUV) photolysis of water: Degradation of 4-chlorophenol, J. Photochem. Photobiol A: Chem., 1993, 75, 97–103.

    Article  CAS  Google Scholar 

  17. N. Karpel Vel Leiter and M. Doré, Mécanisme d’action des radicaux OH sur les acides glycolique, acétique et oxalique en solution aqueuse: incidence sur la consommation de peroxyde d’hydrogène dans les systèmes H2O2/UV et O3/H2O2, Water Res., 1997, 316, 1383–1397.

    Article  Google Scholar 

  18. C. E. Myhre Lund and C. J. Nielsen, Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols, Atm. Chem. Phys., 2004, 47, 1759–1769.

    Article  Google Scholar 

  19. H. H. Jaffe and M. Orchin, Theory and Application of Ultraviolet Spectroscopy, Wiley, New York, 1962.

    Google Scholar 

  20. N. Karpel Vel Leiter and M. Doré, Rôle de l’oxygène dissous dans le mécanisme de decomposition de l’acide formique en solution aqueuse par irradiation UV en presence de peroxide d’hydrogène, J. Chim. Phys., 1994, 91, 503–518.

    Article  Google Scholar 

  21. G. M. Eisenberg, Colorimetric determination of hydrogen peroxide, Ind. Eng. Chem., 1943, 15, 327–328.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Benoit-Marquié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azrague, K., Bonnefille, E., Pradines, V. et al. Hydrogen peroxide evolution during V-UV photolysis of water. Photochem Photobiol Sci 4, 406–408 (2005). https://doi.org/10.1039/b500162e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b500162e

Navigation