Skip to main content

Advertisement

Log in

Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar energy capture, conversion into chemical energy and biopolymers by photoautotrophic organisms, is the basis for almost all life on Earth. A broad range of organisms have developed complex molecular machinery for the efficient conversion of sunlight to chemical energy over the past 3 billion years, which to the present day has not been matched by any man-made technologies. Chlorophyll photochemistry within photosystem II (PSII) drives the water-splitting reaction efficiently at room temperature, in contrast with the thermal dissociation reaction that requires a temperature of ca. 1550 K. The successful elucidation of the high-resolution structure of PSII, and in particular the structure of its Mn4Ca cluster (K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 303, 1831-1838, ref. 1) provides an invaluable blueprint for designing solar powered biotechnologies for the future. This knowledge, combined with new molecular genetic tools, fully sequenced genomes, and an ever increasing knowledge base of physiological processes of oxygenic phototrophs has inspired scientists from many countries to develop new biotechnological strategies to produce renewable CO2-neutral energy from sunlight. This review focuses particularly on the potential of use of cyanobacteria and microalgae for biohydrogen production. Specifically this article reviews the predicted size of the global energy market and the constraints of global warming upon it, before detailing the complex set of biochemical pathways that underlie the photosynthetic process and how they could be modified for improved biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

air mass spectrum

AOX:

alternative oxidase

Chl:

chlorophyll

Cyt:

cytochrome

e:

electron

Fd:

ferredoxin

FNR:

ferredoxin-NADP+ oxidoreductase

HydA:

hydrogenase

LHC:

light harvesting complex

NPQ:

non-photochemical quenching

PC:

plastocyanin

PCE:

photon conversion efficiency

3-PGA:

3-phosphoglycerate

Pi:

phosphate

PS:

photosystem

Q:

quinone

qE:

energy dependent quenching of chlorophyll fluorescence

rubisco:

ribulose bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

TW:

terawatt

WOC:

water-oxidizing complex

References

  1. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata Science 2004 303 1831–1838

    Article  CAS  PubMed  Google Scholar 

  2. K. Miyamoto, Renewable biological systems for alternative sustainable energy production, FAO-Food and Agriculture Organization of the United Nations, Osaka University, Osaka, 1997

    Google Scholar 

  3. M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. D. Harvey, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G. Watts, T. M. L. Wigley and D. J. Wuebbles Nature 1998 395 881–884

    Article  CAS  Google Scholar 

  4. J. Rifkin, The hydrogen economy, Penguin Putnam Inc. New York, 2002

    Google Scholar 

  5. K. S. Deffeyes, The impending world oil shortage, 2005, see: http://www.princeton.edu/hubbert

    Google Scholar 

  6. World Energy Outlook 2001. Insights Assessing Today’s Supplies to Fuel Tomorrow’s Growth, International Energy Agency, Paris, 2001

  7. A. V. Milkov Earth-Sci. Rev. 2004 66 183–197

    Article  CAS  Google Scholar 

  8. W. G. Ormerod, P. Freund and A. Smith, Ocean storage of CO2, International Energy Agency, Paris, 2002

    Google Scholar 

  9. K. R. Richards, C. Stokes Clim. Change 2004 63 1–48

    Article  Google Scholar 

  10. K. S. Lackner Science 2003 300 1677–1678

    Article  CAS  PubMed  Google Scholar 

  11. Solarbuzz, Photovoltaic industry statistics: Costs, 2005, see: http://www.solarbuzz.com

    Google Scholar 

  12. J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman and M. Stievenard Nature 1999 399 429–436

    Article  CAS  Google Scholar 

  13. J. T. Houghton, Climate Change 2001: The scientific basis summary for policymakers, Intergovernmental Panel on Climate Change, Geneva, 2001

    Google Scholar 

  14. B. C. O’Neill and M. Oppenheimer Science 2002 296 1971–1972

    Article  PubMed  Google Scholar 

  15. T. P. Hughes, A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Guldberg, J. B. C. Jackson, J. Kleypas, J. M. Lough, P. Marshall, M. Nystrom, S. R. Palumbi, J. M. Pandolfi, B. Rosen and J. Roughgarden Science 2003 301 929–933

    Article  CAS  PubMed  Google Scholar 

  16. D. A. Stainforth, T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe and M. R. Allen Nature 2005 433 403–406

    Article  CAS  PubMed  Google Scholar 

  17. U. Cubasch, G. A. Meehl, G. J. Boer, R. J. Stouffer, M. Dix, A. Noda, C. A. Senior, S. Raper and K. S. Yap, in Climate Change 2001: The Scientific Basis, Chapter 9: Projections of Future Climate Change, ed. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden and D. Xiaosu, Cambridge University Press, Cambridge, 2001, pp. 525-582

  18. Q. Schiermeier Nature 2005 435 135

    Article  CAS  PubMed  Google Scholar 

  19. T. Markvart, Photovoltaic solar energy conversion, European Summer University: Energy for Europe, Strasbourg, July 2002

    Google Scholar 

  20. P. W. Stackhouse and C. H. Whitlock, NASA Surface Meteorology and Solar Energy, 2005, see: http://eosweb.larc.nasa.gov/sse/

    Google Scholar 

  21. N. P. Harder and P. Wurfel Semicond. Sci. Technol. 2003 18 151–157

    Article  Google Scholar 

  22. L. Taiz and E. Zeiger, Plant Physiology, Sinauer Associates, Inc. Sunderland, USA, 2002

    Google Scholar 

  23. J. P. Dekker and E. J. Boekema Biochim. Biophys. Acta 2005 1706 12–39

    Article  CAS  PubMed  Google Scholar 

  24. L. A. Staehelin J. Cell Biol. 1976 71 136–158

    Article  CAS  PubMed  Google Scholar 

  25. P. Mitchell and J. Moyle Nature 1967 213 137–139

    Article  CAS  PubMed  Google Scholar 

  26. G. Finazzi, F. Rappaport, A. Furia, M. Fleischmann, J. D. Rochaix, F. Zito and G. FortiEMBO Rep. 2002 3 280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Cournac, G. Guedeney, G. Peltier and P. M. Vignais J. Bacteriol. 2004 186 1737–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. R. Grossman, D. Bhaya and Q. F. He J. Biol. Chem. 2001 276 11449–11452

    Article  CAS  PubMed  Google Scholar 

  29. T. S. Bibby, J. Nield and J. Barber Nature 2001 412 743–745

    Article  CAS  PubMed  Google Scholar 

  30. E. J. Boekema, A. Hifney, A. E. Yakushevska, M. Piotrowski, W. Keegstra, S. Berry, K. P. Michel, E. K. Pistorius and J. Kruip Nature 2001 412 745–748

    Article  CAS  PubMed  Google Scholar 

  31. E. J. Boekema, B. Hankamer, D. Bald, J. Kruip, J. Nield, A. F. Boonstra, J. Barber and M. Rogner Proc. Natl. Acad. Sci. U. S. A. 1995 92 175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Hankamer, J. Nield, D. Zheleva, E. Boekema, S. Jansson and J. Barber Eur. J. Biochem. 1997 243 422–429

    Article  CAS  PubMed  Google Scholar 

  33. D. Elrad and A. R. Grossman Curr. Genet. 2004 45 61–75

    Article  CAS  PubMed  Google Scholar 

  34. E. J. Stauber, A. Fink, C. Markert, O. Kruse, U. Johanningmeier and M. Hippler Eukaryotic Cell. 2003 2 978–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Bellafiore, F. Bameche, G. Peltier and J. D. Rochaix Nature 2005 433 892–895

    Article  CAS  PubMed  Google Scholar 

  36. J. Barber and B. Andersson Trends Biochem. Sci. 1992 17 61–66

    Article  CAS  PubMed  Google Scholar 

  37. D. P. Maxwell, S. Falk, C. G. Trick and N. P. A. Huner Plant Physiol. 1994 105 535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Teramoto, A. Nakamori, J. Minagawa and T. Ono Plant Physiol. 2002 130 325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. M. Escoubas, M. Lomas, J. Laroche and P. G. Falkowski Proc. Natl. Acad. Sci. U. S. A. 1995 92 10237–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. H. Yang, J. Webster, Z. Adam, M. Lindahl and B. Andersson Plant Physiol. 1998 118 827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. G. Durnford, J. A. Price, S. M. McKim and M. L. Sarchfield Physiol. Plant. 2003 118 193–205

    Article  CAS  Google Scholar 

  42. A. Melis, J. Neidhardt and J. R. Benemann J. Appl. Phycol. 1998 10 515–525

    Article  Google Scholar 

  43. P. Horton, A. V. Ruban and R. G. Walters Annu. Rev. Plant Phys. 1996 47 655–684

    Article  CAS  Google Scholar 

  44. J. F. Allen, J. Bennett, K. E. Steinback and C. J. Arntzen Nature 1981 291 25–29

    Article  CAS  Google Scholar 

  45. J. F. Allen Photosynth. Res. 1993 36 95–102

    Article  CAS  PubMed  Google Scholar 

  46. P. Mueller, X. P. Li and K. K. Niyogi Plant Physiol. 2001 125 1558–1566

    Article  Google Scholar 

  47. B. Demmig-Adams, W. W. Adams, III and Trends Plant Sci. 1996 1 21–26

    Article  Google Scholar 

  48. K. K. Niyogi, X. P. Li, V. Rosenberg and H. S. Jung J. Exp. Bot. 2005 56 375–382

    Article  CAS  PubMed  Google Scholar 

  49. N. E. Holt, D. Zigmantas, L. Valkunas, X. P. Li, K. K. Niyogi and G. R. Fleming Science 2005 307 433–436

    Article  CAS  PubMed  Google Scholar 

  50. J. Nield, C. Funk and J. Barber Philos. Trans. R. Soc. London, Ser. B 2000 355 1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. P. Dominici, S. Caffarri, F. Armenante, S. Ceoldo, M. Crimi and R. Bassi J. Biol. Chem. 2002 277 22750–22758

    Article  CAS  PubMed  Google Scholar 

  52. J. Masojidek, J. Kopecky, M. Koblizek and G. Torzillo Plant Biol. 2004 6 342–349

    Article  CAS  PubMed  Google Scholar 

  53. M. Rogner, E. J. Boekema and J. Barber Trends Biochem. Sci. 1996 21 44–49

    Article  CAS  PubMed  Google Scholar 

  54. J. Bennett FEBS Lett. 1979 103 342–344

    Article  CAS  PubMed  Google Scholar 

  55. C. Bonaventura and J. Myers Biochim. Biophys. Acta 1969 189 366–383

    Article  CAS  PubMed  Google Scholar 

  56. N. Murata Biochim. Biophys. Acta 1969 172 242–251

    Article  CAS  PubMed  Google Scholar 

  57. A. Telfer, J. F. Allen, J. Barber and J. Bennett Biochim. Biophys. Acta 1983 722 176–181

    Article  CAS  Google Scholar 

  58. P. Horton and M. T. Black Biochim. Biophys. Acta 1981 635 53–62

    Article  CAS  PubMed  Google Scholar 

  59. A. Gal, H. Zer and I. Ohad Phys. Plant. 1997 100 869–885

    Article  CAS  Google Scholar 

  60. M. Forestier, P. King, L. Zhang, M. Posewitz, S. Schwarzer, T. Happe, M. L. Ghirardi and M. Seibert Eur. J. Biochem. 2003 270 2750–2758

    Article  CAS  PubMed  Google Scholar 

  61. O. Kruse and B. Hankamer Aust. Pat., WO2005003024, 2003

    Google Scholar 

  62. M. A. J. Parry, P. J. Andralojc, R. A. C. Mitchell, P. J. Madgwick and A. J. Keys J. Exp. Bot. 2003 54 1321–1333

    Article  CAS  PubMed  Google Scholar 

  63. C. C. Mann Science 1999 283 314–316

    Article  CAS  PubMed  Google Scholar 

  64. T. J. Andrews and S. M. Whitney Arch. Biochem. Biophys. 2003 414 159–169

    Article  CAS  Google Scholar 

  65. K. K. Singh, C. Chen, D. K. Epstein and M. Gibbs Plant Physiol. 1993 102 587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. S. G. Ball and M. K. Morell Annu. Rev. Plant Biol. 2003 54 207–233

    Article  CAS  PubMed  Google Scholar 

  67. L. Bulte, P. Gans, F. Rebeille and F. A. Wollman Biochim. Biophys. Acta 1990 1020 72–80

    Article  CAS  Google Scholar 

  68. M. C. Posewitz, S. L. Smolinski, S. Kanakagiri, A. Melis, M. Seibert and M. L. Ghirardi Plant Cell 2004 16 2151–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. G. Bowes, W. L. Ogren and R. H. Hageman Biochem. Biophys. Res. Commun. 1971 45 716–722

    Article  CAS  PubMed  Google Scholar 

  70. G. H. Lorimer Annu. Rev. Plant Phys. 1981 32 349–383

    Article  CAS  Google Scholar 

  71. M. H. Spalding, in The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, ed. J. D. Rochaix, M. Goldschmidt-Clermont and S. Merchant, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 529-547

  72. R. Douce and H. W. Heldt, in Photosynthesis: Physiology and Metabolism, ed. R. C. Leegood, T. D. Sharkey and S. vo. Caemmerer, Kluwer Academic Publishers, Dordrecht, 2000, pp. 115-136

  73. A. S. Raghavendra and K. Padmasree Trends Plant Sci. 2003 8 546–553

    Article  CAS  PubMed  Google Scholar 

  74. S. Kromer and H. W. Heldt Plant Physiol. 1991 95 1270–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. U. I. Flugge Curr. Opin. Plant Biol. 1998 1 201–206

    Article  CAS  PubMed  Google Scholar 

  76. S. Kromer Annu. Rev. Plant Phys. 1995 46 45–70

    Article  Google Scholar 

  77. A. M. Michalecka, S. C. Agius, I. M. Moller and A. G. Rasmusson Plant J. 2004 37 415–425

    Article  CAS  PubMed  Google Scholar 

  78. C. Schonfeld, L. Wobbe, R. Borgstadt, A. Kienast, P. J. Nixon and O. Kruse J. Biol. Chem. 2004 279 50366–50374

    Article  PubMed  CAS  Google Scholar 

  79. D. W. Husic and N. E. Tolbert Arch. Biochem. Biophys. 1987 252 396–408

    Article  CAS  PubMed  Google Scholar 

  80. R. C. Prince and H. S. Kheshgi Crit. Rev. Microbiol. 2005 31 19–31

    Article  CAS  PubMed  Google Scholar 

  81. M. A. Borowitzka J. Biotechnol. 1999 70 313–321

    Article  CAS  Google Scholar 

  82. M. Janssen, J. Tramper, L. R. Mur and R. H. Wijffels Biotechnol. Bioeng. 2003 81 193–210

    Article  CAS  PubMed  Google Scholar 

  83. J. Masojidek, S. Papacek, M. Sergejevova, V. Jirka, J. Cerveny, J. Kunc, J. Korecko, O. Verbovikova, J. Kopecky, D. Stys and G. Torzillo J. Appl. Phycol. 2003 15 239–248

    Article  CAS  Google Scholar 

  84. A. A. Tsygankov, A. S. Fedorov, S. N. Kosourov and K. K. Rao Biotechnol. Bioeng. 2002 80 777–783

    Article  CAS  PubMed  Google Scholar 

  85. H. Gaffron Nature 1939 143 204–205

    Article  CAS  Google Scholar 

  86. H. Gaffron J. Gen. Physiol. 1942 26 219–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. V. A. Boichenko and P. Hoffmann Photosynthetica 1994 30 527–552

    CAS  Google Scholar 

  88. D. S. Horner, P. G. Foster and T. M. Embley Mol. Biol. Evol. 2000 17 1695–1709

    Article  CAS  PubMed  Google Scholar 

  89. E. J. Lyon, S. Shima, G. Buurman, S. Chowdhuri, A. Batschauer, K. Steinbach and R. K. Thauer Eur. J. Biochem. 2004 271 195–204

    Article  CAS  PubMed  Google Scholar 

  90. V. A. Boichenko, E. Greenbaum and M. Seibert, in Photoconversion of solar energy, molecular to global photosynthesis, ed. M. D. Archer and J. Barber, Imperial College Press, London, 2004, pp. 397-452

  91. K. Schutz, T. Happe, O. Troshina, P. Lindblad, E. Leitao, P. Oliveira and P. Tamagnini Planta 2004 218 350–359

    Article  PubMed  CAS  Google Scholar 

  92. L. Casalot and M. Rousset Trends Microbiol. 2001 9 228–237

    Article  CAS  PubMed  Google Scholar 

  93. M. Frey Chem. Biochem. 2002 3 153–160

    CAS  Google Scholar 

  94. P. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers and P. Lindblad Microbiol. Mol. Biol. Rev. 2002 66 1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. S. Kumazawa and A. Mitsui Int. J. Hydrogen Energy 1981 6 339–348

    Article  CAS  Google Scholar 

  96. L. Florin, A. Tsokoglou and T. Happe J. Biol. Chem. 2001 276 6125–6132

    Article  CAS  PubMed  Google Scholar 

  97. T. Happe and J. D. Naber Eur. J. Biochem. 1993 214 475–481

    Article  CAS  PubMed  Google Scholar 

  98. M. W. W. Adams Biochim. Biophys. Acta 1990 1020 115–145

    Article  CAS  PubMed  Google Scholar 

  99. Department of Energy, Hydrogen Production & Delivery, 2004, see: http://www.eere.energy.gov/hydrogenandfuelcells/production/

    Google Scholar 

  100. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi and M. Seibert Plant Physiol. 2000 122 127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. Kosourov, A. Tsygankov, M. Seibert and M. L. Ghirardi Biotechnol. Bioeng. 2002 78 731–740

    Article  CAS  PubMed  Google Scholar 

  102. S. Kosourov, M. Seibert and M. L. Ghirardi Plant Cell Physiol. 2003 44 146–155

    Article  CAS  PubMed  Google Scholar 

  103. D. D. Wykoff, J. P. Davies, A. Melis and A. R. Grossman Plant Physiol. 1998 117 129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. J. E. W. Polle, S. Kanakagiri, E. Jin, T. Masuda and A. Melis Int. J. Hydrogen Energy 2002 27 1257–1264

    Article  CAS  Google Scholar 

  105. A. S. Fedorov, S. Kosourov, M. L. Ghirardi and M. Seibert Appl. Biochem. Biotechnol. 2005 121 403–412

    Article  PubMed  Google Scholar 

  106. S. I. Allakhverdiev, Y. Nishiyama, S. Takahashi, S. Miyairi, I. Suzuki and N. Murata Plant Physiol. 2005 137 263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. C. Sicora, Z. Mate and I. Vass Photosynth. Res. 2003 75 127–137

    Article  CAS  PubMed  Google Scholar 

  108. J. He and W. S. Chow Phys. Plant. 2003 118 297–304

    Article  CAS  Google Scholar 

  109. H. Sakurai, H. Masukawa, S. Dawar and F. Yoshino, in Biohydrogen III, ed. J. Miyake, Y. Igaraski and M. Rogner, Elsevier, Amsterdam, 2004, pp. 83-92

  110. K. Miyamoto, P. C. Hallenbeck and J. R. Benemann Biotechnol. Bioeng. 1979 21 1855–1860

    Article  CAS  Google Scholar 

  111. S. Suda, S. Kumazawa and A. Mitsui Arch. Microbiol. 1992 158 1–4

    Article  CAS  Google Scholar 

  112. S. Kumazawa and A. Mitsui Biotechnol. Bioeng. 1994 44 854–858

    Article  CAS  PubMed  Google Scholar 

  113. S. A. Markov, M. J. Bazin and D. O. Hall Enzyme Microb. Technol. 1995 17 306–310

    Article  CAS  Google Scholar 

  114. E. Greenbaum Biotechnol. Bioeng. 1980 22 1–13

    Article  Google Scholar 

  115. E. Greenbaum, Biophotolysis of water: the light saturation curves Photobiochem. Photophys. 1984 8 323–332 (ed. B. Ke, Kluwer Academic Publishers, Dordrecht)

    CAS  Google Scholar 

  116. M. Reeves and E. Greenbaum Enzyme Microb. Technol. 1985 7 169–174

    Article  CAS  Google Scholar 

  117. A. A. Tsygankov, in Biohydrogen III. Renewable energy system by biological solar energy conversion, ed. J. Miyake, Y. Igaraski and M. Rogner, Elsevier, Amsterdam, 2004, pp. 57-75

  118. A. Melis and T. Happe Photosynth. Res. 2004 80 401–409

    Article  CAS  PubMed  Google Scholar 

  119. W. A. Amos, Analysis of two biomass gasification/fuel cell scenarios for small scale power generation NREL/TP-570-25886, National Renewable Energy Laboratory, Golden, Colorado, 1998

    Google Scholar 

  120. W. A. Amos, Report on biomass drying technology NREL/TP-570-25885, National Renewable Energy Laboratory, Golden, Colorado, 1998

    Google Scholar 

  121. S. Berry, Y. V. Bolychevtseva, M. Rogner and N. V. Karapetyan Photosynth. Res. 2003 78 67–76

    Article  CAS  PubMed  Google Scholar 

  122. O. Kruse, J. Rupprecht, K. P. Bader, U. Kahmann, G. Finazzi and B. Hankamer J. Biol. Chem. 2005 280 40 34170–34177

    Article  CAS  PubMed  Google Scholar 

  123. O. Kruse, P. J. Nixon, G. H. Schmid and C. W. Mullineaux Photosynth. Res. 1999 61 43–51

    Article  CAS  Google Scholar 

  124. P. G. Falkowski Curr. Biol. 1997 7 R637–R639

    Article  CAS  PubMed  Google Scholar 

  125. G. Ananyev and G. C. Dismukes Photosynth. Res. 2005 84 1-3 355–365

    Article  CAS  PubMed  Google Scholar 

  126. D. A. Hodgson, W. Vyverman, E. Verleyen, K. Sabbe, P. R. Leavitt, A. Taton, A. H. Squier and B. J. Keely Aquat. Microbiol. Ecol, Proc. Conf. 2004 37 247–263

    Article  Google Scholar 

  127. G. M. Ananyev, L. Zaltsman, C. Vasko and G. C. Dismukes Biochim. Biophys. Acta 2001 1503 52–68

    Article  CAS  PubMed  Google Scholar 

  128. S. V. Baranov, A. M. Tyryshkin, D. Katz, G. C. Dismukes, G. M. Ananyev and V. V. Klimov Biochemistry 2004 43 2070–2079

    Article  CAS  PubMed  Google Scholar 

  129. V. V. Klimov and S. V. Baranov Biochim. Biophys. Acta 2001 1503 187–196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Kruse.

Additional information

Dedicated to Professor James Barber on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, O., Rupprecht, J., Mussgnug, J.H. et al. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4, 957–970 (2005). https://doi.org/10.1039/b506923h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b506923h

Navigation