Issue 6, 2006

Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate

Abstract

This paper presents a novel channel fabrication technology of bulk-micromachined monolithic embedded polymer channels in silicon substrate. The fabrication process favorably obviates the need for sacrifical materials in surface-micromachined channels and wafer-bonding in conventional bulk-micromachined channels. Single-layer-deposited parylene C (poly-para-xylylene C) is selected as a structural material in the microfabricated channels/columns to conduct life science research. High pressure capacity can be obtained in these channels by the assistance of silicon substrate support to meet the needs of high-pressure loading conditions in microfluidic applications. The fabrication technology is completely compatible with further lithographic CMOS/MEMS processes, which enables the fabricated embedded structures to be totally integrated with on-chip micro/nano-sensors/actuators/structures for miniaturized lab-on-a-chip systems. An exemplary process was described to show the feasibility of combining bulk micromachining and surface micromachining techniques in process integration. Embedded channels in versatile cross-section profile designs have been fabricated and characterized to demonstrate their capabilities for various applications. A quasi-hemi-circular-shaped embedded parylene channel has been fabricated and verified to withstand inner pressure loadings higher than 1000 psi without failure for micro-high performance liquid chromatography (μHPLC) analysis. Fabrication of a high-aspect-ratio (internal channel height/internal channel width, greater than 20) quasi-rectangular-shaped embedded parylene channel has also been presented and characterized. Its implementation in a single-mask spiral parylene column longer than 1.1 m in a 3.3 mm × 3.3 mm square size on a chip has been demonstrated for prospective micro-gas chromatography (μGC) and high-density, high-efficiency separations. This proposed monolithic embedded channel technology can be extensively implemented to fabricate microchannels/columns in high-pressure microfludics and high-performance/high-throughput chip-based micro total analysis systems (μTAS).

Graphical abstract: Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2006
Accepted
21 Mar 2006
First published
30 Mar 2006

Lab Chip, 2006,6, 803-810

Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate

P. Chen, C. Shih and Y. Tai, Lab Chip, 2006, 6, 803 DOI: 10.1039/B600224B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements