Issue 4, 2007

Single-cell electroporation arrays with real-time monitoring and feedback control

Abstract

Rapid well-controlled intracellular delivery of drug compounds, RNA, or DNA into a cell – without permanent damage to the cell – is a pervasive challenge in basic cell biology research, drug discovery, and gene delivery. To address this challenge, we have developed a bench-top system comprised of a control interface, that mates to disposable 96-well-formatted microfluidic devices, enabling the individual manipulation, electroporation and real-time monitoring of each cell in suspension. This is the first demonstrated real-time feedback-controlled electroporation of an array of single-cells. Our computer program automatically detects electroporation events and subsequently releases the electric field, precluding continued field-induced damage of the cell, to allow for membrane resealing. Using this novel set-up, we demonstrate the reliable electroporation of an array (n = 15) of individual cells in suspension, using low applied electric fields (<1 V) and the rapid and localized intracellular delivery of otherwise impermeable compounds (Calcein and Orange Green Dextran). Such multiplexed electrical and optical measurements as a function of time are not attainable with typical electroporation setups. This system, which mounts on an inverted microscope, obviates many issues typically associated with prototypical microfluidic chip setups and, more importantly, offers well-controlled and reproducible parallel pressure and electrical application to individual cells for repeatability.

Graphical abstract: Single-cell electroporation arrays with real-time monitoring and feedback control

Article information

Article type
Paper
Submitted
03 Oct 2006
Accepted
07 Feb 2007
First published
07 Mar 2007

Lab Chip, 2007,7, 457-462

Single-cell electroporation arrays with real-time monitoring and feedback control

M. Khine, C. Ionescu-Zanetti, A. Blatz, L. Wang and L. P. Lee, Lab Chip, 2007, 7, 457 DOI: 10.1039/B614356C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements