Issue 6, 2007

Cavitation rheology for soft materials

Abstract

To guide the development of tissue scaffolds and the characterization of naturally heterogeneous biological tissues, we have developed a method to determine the local modulus at an arbitrary point within a soft material. The method involves growing a cavity at the tip of a syringe needle and monitoring the pressure of the cavity at the onset of a mechanical instability. This critical pressure is directly related to the local modulus of the material. The results focus on the network development of poly(lactide)–poly(ethylene oxide)–poly(lactide) triblock copolymer and poly(vinyl alcohol) hydrogels. These materials serve as model materials for tissue scaffolds and soft biological tissues. This new method not only provides an easy, efficient, and economical method to guide the design and characterization of soft materials, but it also provides quantitative data of the local mechanical properties in naturally heterogeneous materials.

Graphical abstract: Cavitation rheology for soft materials

Article information

Article type
Paper
Submitted
22 Nov 2006
Accepted
09 Mar 2007
First published
30 Mar 2007

Soft Matter, 2007,3, 763-767

Cavitation rheology for soft materials

J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew and A. J. Crosby, Soft Matter, 2007, 3, 763 DOI: 10.1039/B617050A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements