Issue 5, 2008

pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue

Abstract

An important challenge for colloid scientists is to design injectable dispersions that provide structural support for damaged soft tissue and enable regeneration of tissue over the longer term. In this article we highlight a new area of research that aims to produce pH-responsive microgel dispersions that restore the mechanical properties of damaged, load-bearing, soft tissue. Chronic back pain due to degeneration of the intervertebral disc (IVD) is a major health problem and is the primary potential application for the work discussed. pH-Responsive microgel dispersions contain cross-linked polymer particles that swell when the pH approaches the pKa of the incorporated ionic co-monomer. The work considered here involves microgel particles containing MAA (methacrylic acid). The particles show pronounced pH-triggered swelling. The concentrated microgel dispersions change from a fluid to a gel at pH values greater than ca. 6.2, which is within the physiological pH range. The rheological properties are pH-dependent and can be adjusted using particle composition or concentration. Degenerated IVDs containing injected, gelled, microgel dispersions show improved mechanical properties. The disc height under biomechanically meaningful loads can be restored to values observed in non-degenerated IVDs. We also discuss the steps required to provide a minimally invasive injectable microgel system for restoring both the IVD mechanical properties and regenerating tissue in vivo. The approach discussed should also be suitable for other soft tissue types in the body.

Graphical abstract: pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue

Article information

Article type
Highlight
Submitted
28 Nov 2007
Accepted
28 Jan 2008
First published
29 Feb 2008

Soft Matter, 2008,4, 919-924

pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue

T. J. Freemont and B. R. Saunders, Soft Matter, 2008, 4, 919 DOI: 10.1039/B718441G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements