Issue 12, 2008

Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities

Abstract

Recently it was shown that enzymatic and mechanical processing of macroscopic cellulose fibers lead to disintegration of long and entangled native cellulose I nanofibers in order to form mechanically strong aqueous gels (Pääkkö et al., Biomacromolecules, 2007, 8, 1934). Here we demonstrate that (1) such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, (2) they are flexible, unlike most aerogels that suffer from brittleness, and (3) they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogels show a high porosity of ∼98% and a very low density of ca. 0.02 g cm−3. The flexibility of the aerogels manifests as a particularly high compressive strain of ca. 70%. In addition, the structure of the aerogels can be tuned from nanofibrillar to sheet-like skeletons with hierarchical micro- and nanoscale morphology and porosity by modifying the freeze-drying conditions. The porous flexible aerogel scaffold opens new possibilities for templating organic and inorganic matter for various functionalities. This is demonstrated here by dipping the aerogels in an electrically conducting polyaniline–surfactant solution which after rinsing off the unbound conducting polymer and drying leads to electrically conducting flexible aerogels with relatively high conductivity of around 1 × 10−2 S cm−1. More generally, we foresee a wide variety of functional applications for highly porous flexible biomatter aerogels, such as for selective delivery/separation, tissue-engineering, nanocomposites upon impregnation by polymers, and other medical and pharmaceutical applications.

Graphical abstract: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities

Article information

Article type
Paper
Submitted
18 Jun 2008
Accepted
31 Jul 2008
First published
23 Sep 2008

Soft Matter, 2008,4, 2492-2499

Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities

M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindström, L. A. Berglund and O. Ikkala, Soft Matter, 2008, 4, 2492 DOI: 10.1039/B810371B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements