Skip to main content
Log in

Visible light photo-oxidations in the presence of α-Bi2O3

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

α-Bismuth oxides of specific surface areas of 1-3 m2 g−1 were prepared by three different methods and their visible light activity was tested in the photodegradation (λ≥ 420 nm) of 4-chlorophenol. In method A, which led to powders of poor to moderate photoactivity, the starting materials BiONO3, Bi(NO3)3·5H2O, (BiO)2CO3, and BiOCl were annealed at 500 °C without any pretreatment. In method B the salt (BiO)2CO3 was washed with water and subsequently calcined at 450 °C affording a very active powder. In method C the salts BiONO3, Bi(NO3)3·5H2O and (BiO)2CO3 were dissolved in nitric acid and Bi(OH)3 was precipitated by addition of sodium hydroxide. After annealing at 500 °C the resulting oxides exhibited moderate activity in the case of the (BiO)2CO3 precursor whereas highly active powders were obtained from BiONO3 and Bi(NO3)3·5H2O inducing almost complete photomineralization of 4-chlorophenol. XRD analysis indicated the presence of 40-140 nm large crystallites of α-Bi2O3. From diffuse reflectance spectroscopy bandgaps of 2.80 ± 0.05 eV and 2.93 ± 0.05 eV were obtained, assuming an indirect or direct semiconductor, respectively. The quasi-Fermi potential of electrons at pH 7 was determined as −0.08 ± 0.05 V (vs. NHE) through pH dependent photovoltage measurements. Repeated use of the presumed catalyst powder revealed that the mineralization is not a catalytic but a bismuth oxide assisted photo-oxidation. This result shed a critical light on previous reports on the photocatalytic action of binary and ternary bismuth oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. C. De Gobinda, A. M. Roy and S. S. Bhattacharya, Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst, Int. J. Hydrogen Energy, 1996, 21, 19–23.

    Article  Google Scholar 

  2. D. W. Hwang, J. Kim, T. J. Park and J. S. Lee, Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting, Catal. Lett., 2002, 80, 53–57.

    Article  CAS  Google Scholar 

  3. H. Kisch, G. Burgeth and W. Macyk, Visible light photocatalysis by a titania transition metal complex, Adv. Inorg. Chem., 2004, 56, 241–259.

    Article  CAS  Google Scholar 

  4. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol., A, 2002, 148, 257–261.

    Article  CAS  Google Scholar 

  5. S. Sato, Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region, Chem. Phys. Lett., 1986, 123, 126–128.

    Article  CAS  Google Scholar 

  6. S. Sakthivel and H. Kisch, Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide, ChemPhysChem, 2003, 4, 487–490.

    Article  CAS  PubMed  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293, 269–271.

    Article  CAS  PubMed  Google Scholar 

  8. J. L. Gole, J. D. Stout, C. Burda, Y. Lou and X. Chen, Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale, J. Phys. Chem. B, 2004, 108, 1230–1240.

    Article  CAS  Google Scholar 

  9. S. Yin, Q. Zhang, F. Saito and T. Sato, Preparation of visible light-activated titania photocatalyst by mechanochemical method, Chem. Lett., 2003, 32, 358–359.

    Article  CAS  Google Scholar 

  10. T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.-G. Granqvist, S.-E. Lindquist, Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering, J. Phys. Chem. B, 2003, 107, 5709–5716.

    Article  CAS  Google Scholar 

  11. H. Irie, S. Washizuka, Y. Watanabe, T. Kako and K. Hashimoto, Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films, J. Electrochem. Soc., 2005, 152, E351–E356.

    Article  Google Scholar 

  12. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, J. T. Yates, Jr., Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light, J. Phys. Chem. B, 2004, 108, 6004–6008.

    Article  CAS  Google Scholar 

  13. A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey and P. Schmuki, Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes, Nano Lett., 2006, 6, 1080–1082.

    Article  CAS  Google Scholar 

  14. Y. Nosaka, M. Matsushita, J. Nishino and A. Y. Nosaka, Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mater., 2005, 6, 143–148.

    Article  CAS  Google Scholar 

  15. T. Sato, Y. Aita, M. Komatsu and S. Yin, Solvothermal synthesis of visible light responsive nitrogen-doped titania nanocrystals, J. Mater. Sci., 2006, 41, 1433–1438.

    Article  CAS  Google Scholar 

  16. S. Yin, K. Ihara, M. Komatsu, Q. Zhang, F. Saito, T. Kyotani and T. Sato, Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity, Solid State Commun., 2006, 137, 132–137.

    Article  CAS  Google Scholar 

  17. S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito and T. Sato, Synthesis of visible-light reactive TiO2-xNy photocatalyst by mechanochemical doping, Solid State Sci., 2005, 7, 1479–1485.

    Article  CAS  Google Scholar 

  18. M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst, Chem. Mater., 2005, 17, 6349–6353.

    Article  CAS  Google Scholar 

  19. C. H. Rhee, J. S. Lee and S. H. Chung, Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route, J. Mater. Res., 2005, 20, 3011–3020.

    Article  CAS  Google Scholar 

  20. T. A. Egerton, M. Janus and A. W. Morawski, New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate, Chemosphere, 2006, 63, 1203–1208.

    Article  CAS  PubMed  Google Scholar 

  21. J. H. Park, S. Kim and A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Lett., 2006, 6, 24–28.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Li, D.-S. Hwang, N. H. Lee, S.-J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett., 2005, 404, 25–29.

    Article  CAS  Google Scholar 

  23. S. Sakthivel and H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed., 2003, 42, 4908–4911.

    Article  CAS  Google Scholar 

  24. S. Yin, K. Ihara, Y. Aita, M. Komatsu and T. Sato, Visible-light induced photocatalytic activity of TiO2-xAy (A = N, S) prepared by precipitation route, J. Photochem. Photobiol., A, 2006, 179, 105–114.

    Article  CAS  Google Scholar 

  25. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto and T. Majima, Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy, J. Phys. Chem. B, 2004, 108, 19299–19306.

    Article  CAS  Google Scholar 

  26. A. Kudo and S. Hijii, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions, Chem. Lett., 1999, 1103–1104.

    Google Scholar 

  27. W. F. Yao, H. Wang, X. H. Xu, X. F. Cheng, J. Huang, S. X. Shang, X. N. Yang and M. Wang, Photocatalytic property of bismuth titanate Bi12TiO20 crystals, Appl. Catal. A, 2003, 243, 185–190.

    Article  CAS  Google Scholar 

  28. V. V. Kharton, F. M. B. Marques and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, 174, 135–149.

    Article  CAS  Google Scholar 

  29. P. Shuk, H. D. Wiemhoefer, U. Guth, W. Goepel and M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics, 1996, 89, 179–196.

    Article  CAS  Google Scholar 

  30. T. Hasegawa, T. Nagashima and N. Sugimoto, Dispersion properties of Bi2O3-based high nonlinear optical fiber, J. Ceram. Soc. Jpn., 2006, 114, 224–226.

    Article  CAS  Google Scholar 

  31. J. Tang, Z. Zou and J. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem., Int. Ed., 2004, 43, 4463–4466.

    Article  CAS  Google Scholar 

  32. L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou and S. Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Appl. Catal. A, 2006, 308, 105–110.

    Article  CAS  Google Scholar 

  33. U. Ammon, Ph. D. Thesis, University of Erlangen-Nuremberg, 1995.

    Google Scholar 

  34. D. Bongard, M. Moeller, S. N. Rao, D. Corr and L. Walder, Synthesis of nonsymmetrically N,N′-diaryl-substituted 4,4′-bipyridinium salts with redox-tunable and titanium dioxide (TiO2)-anchoring properties, Helv. Chim. Acta, 2005, 88, 3200–3209.

    Article  CAS  Google Scholar 

  35. S. Huenig, J. Gross, E. F. Lier and H. Quast, Two-step redox systems. XII. Synthesis, and polarography of quaternary salts of phenanthrolines, 2,7-diazapyrene, and diazoniapentaphenes, Liebigs Ann. Chem, 1973, 339–358.

    Google Scholar 

  36. S. Sakthivel, M. Janczarek and H. Kisch, Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2, J. Phys. Chem. B, 2004, 108, 19384–19387.

    Article  CAS  Google Scholar 

  37. A. M. Roy, G. C. De, N. Sasmal and S. S. Bhattacharyya, Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement, Int. J. Hydrogen Energy, 1995, 20, 627–630.

    Article  CAS  Google Scholar 

  38. Gmelins Handbuch der Anorganischen Chemie, Verlag Chemie, Weinheim, 8th edn, 1964.

  39. Comprehensive Inorganic Chemistry, ed. J. C. Bailar, Pergamon Press, Braunschweig, first edn, 1973.

    Google Scholar 

  40. G. Brauer, Handbuch der Präparativen Anorganischen Chemie, F. Enke Verlag, Stuttgart, 3rd edn, 1975.

    Google Scholar 

  41. D. F. Swinehart and A. B. Garrett, The equilibria of two basic bismuth nitrates in dilute nitric acid at 25 Deg, J. Am. Chem. Soc., 1951, 73, 507–510.

    Article  CAS  Google Scholar 

  42. M. C. Hidalgo, S. Sakthivel and D. Bahnemann, Highly photoactive and stable TiO2 coatings on sintered glass, Appl. Catal. A, 2004, 277, 183–189.

    Article  CAS  Google Scholar 

  43. J. M. Carlsson, B. Hellsing, H. S. Domingos and P. D. Bristowe, Theoretical investigation of the pure and Zn-doped a and d phases of Bi2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 205122.1–205122.10.

    Article  CAS  Google Scholar 

  44. M. Chakrabarti, S. Dutta, S. Chattapadhyay, A. Sarkar, D. Sanyal and A. Chakrabarti, Grain size dependence of optical properties and positron annihilation parameters in Bi2O3 powder, Nanotechnology, 2004, 15, 1792–1796.

    Article  CAS  Google Scholar 

  45. A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark and B. A. Glowacki, Evaluation of Bi-W-oxides for visible light photocatalysis, Phys. Status Solidi A, 2006, 203, 327–335.

    Article  CAS  Google Scholar 

  46. I. D. Makuta, S. K. Poznyak and A. I. Kulak, Photoelectrochemical determination of bandgap energy in surface layers formed on semiconductor electrodes, Electrochim. Acta, 1995, 40, 1761–1767.

    Article  CAS  Google Scholar 

  47. M. D. Ward, J. R. White and A. J. Bard, Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system, J. Am. Chem. Soc., 1983, 105, 27–31.

    Article  CAS  Google Scholar 

  48. Y. Xu and M. A. A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 2000, 85, 543–556.

    Article  CAS  Google Scholar 

  49. J. Theurich, M. Lindner and D. W. Bahnemann, Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study, Langmuir, 1996, 12, 6368–6376.

    Article  CAS  Google Scholar 

  50. P. Calza and E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic ions, Pure Appl. Chem., 2001, 73, 1839–1848.

    Article  CAS  Google Scholar 

  51. M. Lewandowski and D. F. Ollis, Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale, J. Catal., 2003, 217, 38–46.

    CAS  Google Scholar 

  52. P. Taylor, S. Sunder and V. J. Lopata, Structure, spectra, and stability of solid bismuth carbonates, Can. J. Chem., 1984, 62, 2863–2873.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberl, J., Kisch, H. Visible light photo-oxidations in the presence of α-Bi2O3. Photochem Photobiol Sci 7, 1400–1406 (2008). https://doi.org/10.1039/b811197a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b811197a

Navigation