Skip to main content
Log in

Photophysics and photochemistry of rose bengal bound to human serum albumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Rose bengal (RB) readily binds to human serum albumin (HSA). At low RB concentrations, 90% of the dye is associated to the protein (5 μM), This association takes place in specific binding sites I and/or II. At higher RB concentrations, unspecific binding takes place with up to 10 RB molecules bound per protein molecule. The behavior of excited RB molecules bound to HSA is widely different to that observed in aqueous solution. Furthermore, the data also show that the behavior of bound RB molecules changes with the average number of dye molecules per protein (n). In particular, when n is large, the fluorescence yield is significantly reduced and no measurable long-lived triples and free singlet oxygen formation from bound dyes is detected. These results are related to self-quenching of the singlet and, most likely, excited triplets. All results point to the relevance of intra-protein generated singlet oxygen. However, when the dye is bound to the protein, at low oxygen concentrations such as those prevailing in vivo, trapping by oxygen of the triplet becomes inefficient and type I processes could contribute to the observed photoprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Kanofsky, Singlet oxygen production by lactoperoxidase, J. Biol. Chem., 1983, 258, 5991–5993.

    Article  CAS  PubMed  Google Scholar 

  2. J. R. Kanofsky, Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems, J. Biol. Chem., 1984, 259, 5596–5600.

    Article  CAS  PubMed  Google Scholar 

  3. J. R. Kanofsky, J. Wright, G. E. Miles-Richardson, A. I. Tauber, Biochemical requirements for singlet oxygen production by purified human myeloperoxidase, J. Clin. Invest., 1984, 74, 1489–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. R. Kanofsky, H. Hoogland, R. Wever, S. J. Weiss, Singlet oxygen production by human eosinophils, J. Biol. Chem., 1988, 263, 9692–9696.

    Article  CAS  PubMed  Google Scholar 

  5. M. J. Steinbeck, A. U. Khan, M. J. Kanjorski, Extra cellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and peryline in a polystyrene film, J. Biol. Chem., 1993, 268, 15649–15654.

    Article  CAS  PubMed  Google Scholar 

  6. I. E. Kochevar, R. W. Redmond, Photosensitized production of singlet oxygen, Methods Enzymol., 2000, 319, 20–28.

    Article  CAS  PubMed  Google Scholar 

  7. M. J. Davies, The oxidative environment and proteins damage, Biochim. Biophys. Acta, 2005, 1703, 93–109.

    Article  CAS  PubMed  Google Scholar 

  8. M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.

    Article  CAS  PubMed  Google Scholar 

  9. H. Y. Shrivastava, B. U. Nair, Protein degradation by peroxide catalyzed by chromium (III): Role of coordinated ligand, Biochem. Biophys. Res. Commun., 2000, 270, 749–754.

    Article  CAS  PubMed  Google Scholar 

  10. K. Kim, S. G. Rhee, E. R. Stadtman, Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron, J. Biol. Chem., 1985, 260, 15394–15397.

    Article  CAS  PubMed  Google Scholar 

  11. E. R. Stadtman, B. S. Berlett, Reactive oxygen-mediated protein oxidation in aging and disease, Chem. Res. Toxicol., 1997, 10, 485–494.

    Article  CAS  PubMed  Google Scholar 

  12. A. Wright, W. A. Bubb, C. L. Hawkins, M. J. Davies, Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues, Photochem. Photobiol., 2002, 76, 35–46.

    Article  CAS  PubMed  Google Scholar 

  13. P. E. Morgan, R. T. Dean, M. J. Davies, Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack, Eur. J. Biochem., 2002, 269, 1916–1925.

    Article  CAS  PubMed  Google Scholar 

  14. M. Gracanin, M. J. Davies, Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products, Free Radical Biol. Med., 2007, 42, 1543–51.

    Article  CAS  Google Scholar 

  15. A. Wright, C. L. Hawkins, M. J. Davies, Photo-oxidation of cells generates long-lived intracellular protein peroxides, Free Radical Biol. Med., 2003, 34, 637–647.

    Article  CAS  Google Scholar 

  16. P. E. Morgan, R. T. Dean, M. J. Davies, Protective mechanisms against peptide and protein peroxides generated by singlet oxygen, Free Radical Biol. Med., 2004, 36, 484–496.

    Article  CAS  Google Scholar 

  17. D. C. Neckers, Rose Bengal (Review), J. Photochem. Photobiol., A, 1989, 47, 1–29.

    Article  CAS  Google Scholar 

  18. G. R. Fleming, A. W. Knight, J. M. Morris, R. J. S. Morrison, G. W. Robinson, Picosecond fluorescence studies of xanthenes dyes, J. Am. Chem. Soc., 1977, 99, 4306–4311.

    Article  CAS  Google Scholar 

  19. M. A. J. Rodgerd, Picosecond studies of rose bengal fluorescence in reverse micellar systems. In Reverse Micelles, Ed. Plenum Press, New York, 1984, pp 164–173.

    Google Scholar 

  20. M. A. J. Rodgerd, Picosecond fluorescence studies of rose bengal in aqueous micellar dispersions, Chem. Phys. Lett., 1981, 78, 509–514.

    Article  Google Scholar 

  21. P. Bliski, R. Dabestani, C. F. Chingnell, Influence of cationic surfactant on the photoprocesses of eosine and rose bengal in aqueous solution, J. Phys. Chem., 1991, 95, 5784–5791.

    Article  Google Scholar 

  22. S. L. Murrow, I. Carmichael, and G. L. Hug, Handbook of photochemistry, Mercel Decker Inc., New York, 2nd. Edn, 1993.

    Google Scholar 

  23. L. E. Cramer, K. G. Spears, Hydrogen bond strengths from solvent dependence lifetimes of rose bengal dye, J. Am. Chem. Soc., 1978, 100, 221–227.

    Article  CAS  Google Scholar 

  24. P. Murasecco-Suardi, E. Gassmann, A. M. Braun, E. Oliveros, Determination of the quantum yield of intersystem crossing of rose bengal, Helv. Chim. Acta, 1987, 70, 1760–1773.

    Article  CAS  Google Scholar 

  25. A. Seret, A. Van de Vorts, Solubility and propiertes of Eosin Y and rose bengal triplet state in sodium docecyl sulfate micellar solutios, J. Phys. Chem., 1990, 94, 5293–5299.

    Article  CAS  Google Scholar 

  26. S. D.-M. Islam, O. Ito, Solvent effect on rates of photochemical reactions of rose bengal triplet state studied by nanosecond laser flash photolysis, J. Photochem. Photobiol., A, 1999, 123, 53–59.

    Article  CAS  Google Scholar 

  27. T. Peters, All about albumin proteins. Academic press, New York, first edn., 1996, ch. 3.

    Google Scholar 

  28. F. A. De Wolf, G. M. Brett, Ligand binding proteins: Their potential for application in systems for controlled delivery and uptake of ligands, Pharmacol. Rev., 2000, 52, 200–236.

    Google Scholar 

  29. U. Kragh-Hansen, Structure and ligand binding properties of human serum albumin (Review), Dan. Med. Bull., 1990, 37, 57–84.

    CAS  PubMed  Google Scholar 

  30. B. Honoré, Conformational changes in human serum albumin induced by ligand binding, Phamacol. Toxicol., 1990, 66, 7–26.

    Google Scholar 

  31. U. Kragh-Hansen, H. Vorum, Quantitative analyses of the interaction between calcium ions and human serum albumin, Clin. Chem., 1993, 39, 202–208.

    Article  CAS  PubMed  Google Scholar 

  32. S. I. Fujiwara, T. Amisaki, Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method, J. Biophys., 2008, 94, 95–103.

    Article  CAS  Google Scholar 

  33. X. M. He, D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature., 1992, 358, 209–215.

    Article  CAS  PubMed  Google Scholar 

  34. G. Sudlow, D. J. Birkett, D. N. Wade, The characterization of two specific drug binding sites on human serum albumin, Mol. Pharmacol., 1975, 11, 824–832.

    CAS  PubMed  Google Scholar 

  35. G. Sudlow, D. J. Birkett, D. N. Wade, Further characterization of specific drug binding sites on human serum albumin, Mol. Pharmacol., 1976, 12, 1052–1061.

    CAS  PubMed  Google Scholar 

  36. M. Dockal, M. Chang, D. C. Carter, F. Ruker, Five recombinant fragments of human serum albumin-Tools for the characterization of the warfarin binding site, Protein Sci., 2000, 9, 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D. E. Epps, T. J. Raub, F. J. Kézdy, A general, wide-rage spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin, Anal. Biochem., 1995, 227, 342–350.

    Article  CAS  PubMed  Google Scholar 

  38. D. E. Epps, T. J. Raub, V. Caiolfa, A. Chari, M. Zamai, Determination of the affinity of the drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescent of the protein, J. Pharm. Pharmacol., 1998, 51, 41–48.

    Article  Google Scholar 

  39. U. Mathias, M. Jung, Determination of drug-serum protein interactions via fluorescence polarization measurements, Anal. Bimanual. Chem., 2007, 388, 1147–1156.

    Article  CAS  Google Scholar 

  40. C. Qin, M. X. Xie, Y. Liu, Characterization of the myricetin-human serum albumin complex by spectroscopic and molecular modeling approaches, Biomacromolecules, 2007, 8, 2182–2189.

    Article  CAS  PubMed  Google Scholar 

  41. G. Fanali, A. Bocedi, P. Ascenzi, M. Fasano, Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs, An optical and NMR spectroscopic study, FEBS J., 2007, 274, 4491–4502.

    Article  CAS  PubMed  Google Scholar 

  42. A. Barik, K. I. Priyadarsini, H. Mohan, Photophysical studies on binding of curcumin to bovine serum albumins, Photochem. Photobiol., 2003, 77, 597–603.

    Article  CAS  PubMed  Google Scholar 

  43. E. L. Forker, B. A. Luxon, M. Snell, W. O. Shurmantine, Effect of albumin binding on the hepatic transport of rose bengal: Surface-Mediated dissociation of limited capacity, J. Pharmacol. Exp. Ther., 1982, 223, 342–347.

    CAS  PubMed  Google Scholar 

  44. E. L. Forker, B. A. Luxon, Albumin-mediated transport of rose bengal by perfused rat liver: Kinetics of the reaction at cell surface, J. Clin. Invest., 1983, 72, 1764–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. E. Abuin, A. Aspée, E. Lissi, L. León, Binding of rose bengal to bovine serum albumin, J. Chil. Chem. Soc, 2007, 52, 1196–1197.

    CAS  Google Scholar 

  46. M. J. Kronman, L. G. Holmes, The fluorescence of native, denaturated and reduced-denaturated proteins, Photochem. Photobiol., 1971, 14, 113–134.

    Article  CAS  Google Scholar 

  47. M. Kubista, R. Sojback, S. Ericksson, B. Albinsson, Experimental correction for the inner-filter effect in fluorescence spectra, Analyst, 1994, 119, 417–419.

    Article  CAS  Google Scholar 

  48. C. Reichardt, Solvents and solvent effects in organic chemistry, 2nd Edn., VCH, New York, 1990..

    Google Scholar 

  49. M. A. Montenegro, I. L. Nunes, A. Z. Mercadante, C. D. Borsarelli, Photoprotection of vitamins in skimmed milk by aqueous soluble lycopene-gum arabic microcapsule, J. Agric. Food Chem., 2007, 55, 323–329.

    Article  CAS  PubMed  Google Scholar 

  50. A. M. Campos, C. Cárcamo, E. Silva, S. García, E. Lemp, E. Alarcón, A. M. Edwards, G. Günther, E. Lissi, Distribution of urocanic acid isomers between aqueous solutions and n-octanol, liposomes or bovine serum albumin, J. Photochem. Photobiol., B., 2008, 90, 41–46.

    Article  CAS  Google Scholar 

  51. A. H. Terpstra, C. J. Woodward, F. J. Sanchez-Muniz, Improved techniques for the separation of serum lipoproteins by density gradient ultracentrifugation: visualization by prestaining and rapid separation of serum lipoproteins from small volumes of serum, Anal. Biochem., 1981, 111, 149–157.

    Article  CAS  PubMed  Google Scholar 

  52. M. V. Encinas, E. Lissi, Evaluation of partition constant in compartmentalized systems from fluorescence quenching data, Chem. Phys. Lett., 1982, 91, 55–57.

    Article  CAS  Google Scholar 

  53. F. R. Chen. Raymond, G. G. Vurek, N. Alexander, Fluorescence Decay Times: Proteins, Coenzymes, and Other Compounds in Water, Science, 1967, 156, 949–951.

    Article  Google Scholar 

  54. R. Boch, N. Mohtat, Y. Lear, J. T. Arnason, T. Durst, J. C. Scaiano, Study of photoinduced energy and electron transfer in a–terthienyl-bovine serum albumin conjugates: a laser flash photolysis study, Photochem. Photobiol., 1996, 64, 92–99.

    Article  CAS  PubMed  Google Scholar 

  55. E. B. Abuin, E. A. Lissi, Diffusion and concentration of oxygen in microheterogeneous systems, Evaluation from luminescence quenching data, Prog. Reaction Kinetics., 1991, 16, 1–33.

    CAS  Google Scholar 

  56. E. A. Lissi, T. Caceres, Oxygen diffusion-concentration in erythrocyte plasma membranes studied by the fluorescence quenching of anionic and cationic pyrene derivatives, J. Bioenerg. Biomembr., 1989, 21, 375–385.

    Article  CAS  PubMed  Google Scholar 

  57. A. B. Uzdensky, V. Iani, L.-W. Ma, J. Moan, Photobleaching of Hypericin bound to Human serum albumin, cultured adenocarcinoma cells and nude mice skin, Photochem. Photobiol., 2002, 76, 320–328.

    Article  CAS  PubMed  Google Scholar 

  58. J. Slawinski, M. Elbanowski, D. Slawinska Spectral, Characteristics and mechanisms of chemiluminiscence from tryptophan solutions induced by UV-Irradiation, Photochem. Photobiol., 1980, 32, 253–260.

    Article  CAS  Google Scholar 

  59. J. Davila, A. Harriman, Photoreactions of macrocyclic dyes bound to human serum albumin, Photochem. Photobiol., 1990, 51, 9–19.

    Article  CAS  PubMed  Google Scholar 

  60. E. A. Lissi, M. V. Encinas, E. Lemp, M. A. Rubio, Singlet oxygen O21Δg) bimolecular processes, Solvent and compartmentalization effects, Chem. Rev., 1993, 93, 699–723.

    Article  CAS  Google Scholar 

  61. F. Avila, A. Matus, D. Fuentealba, E. Lissi, B. Friguet, E. Silva, Autosensitized oxidation of glycated bovine lens proteins irradiated with UVA-visible light at low oxygen concentration, Photochem. Photobiol. Sci., 2008, 7, 718–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Lissi.

Additional information

†This article was published as part of the themed issue in honour of Esther Oliveros.

‡ Electronic supplementary information (ESI) available: Methodology for calculating number of bound molecules; Stern–Volmer plots for the quenching of HSA fluorescence by RB. See DOI: 10.1039/b901056d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, E., Edwards, A.M., Aspée, A. et al. Photophysics and photochemistry of rose bengal bound to human serum albumin. Photochem Photobiol Sci 8, 933–943 (2009). https://doi.org/10.1039/b901056d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b901056d

Navigation