Issue 23, 2009

Functionalization of electrospun ceramic nanofibre membranes with noble-metal nanostructures for catalytic applications

Abstract

This article reports a simple method for functionalizing the surface of TiO2 (both anatase and rutile) and ZrO2nanofibre membranes with Pt, Pd, and Rh nanoparticles. The TiO2membranes were prepared in the form of nonwoven mats by electrospinning with a solution containing both poly(vinyl pyrrolidone) and titanium tetraisopropoxide, followed by calcination in air to generate anatase (at 510 °C) or rutile (at 800 °C). The ZrO2membranes were fabricated with a solution of poly(vinyl pyrrolidone) and zirconium acetylacetonate, followed by calcination in air at 550 °C to yield the tetragonal phase. The fibre mats were then immersed in a polyol reduction bath to coat the surface of the nanofibres with Pt, Pd, or Rh nanoparticles of 2–5 nm in size. In addition, the ceramic fibres decorated with Pt nanoparticles could serve as a substrate to grow Pt nanowires ∼7 nm in diameter with lengths up to 125 nm. We subsequently demonstrated the use of Pd-coated anatase fibre membranes as a catalytic system for cross-coupling reactions in a continuous flow reactor. Contrary to the conventional setup for an organic synthesis, a continuous flow system has advantages such as short reaction time and no need for separation. The membrane-based catalytic system can also be fully regenerated for reuse.

Graphical abstract: Functionalization of electrospun ceramic nanofibre membranes with noble-metal nanostructures for catalytic applications

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2009
Accepted
25 Mar 2009
First published
24 Apr 2009

J. Mater. Chem., 2009,19, 3878-3882

Functionalization of electrospun ceramic nanofibre membranes with noble-metal nanostructures for catalytic applications

E. Formo, M. S. Yavuz, E. P. Lee, L. Lane and Y. Xia, J. Mater. Chem., 2009, 19, 3878 DOI: 10.1039/B901509D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements