Skip to main content
Log in

Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen (1O2) and to a lesser extent of hydroxyl radical (·OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPD:

Cyclobutadipyrimidines

CHO:

Chinese hamster ovary

Endo:

III Endonuclease III

DHPN:

N,N′-Di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide

FapyGua:

2,6-Diamino-4-hydroxy-5-formamidopyrimidine

Fpg:

Formamidopyrimidine DNA N-glycosylase

HPLC-ECD:

High performance liquid chromatography associated with electrochemical detection

HPLC-MS/MS:

High performance liquid chromatography associated with tandem mass spectrometry

MRM:

Multiple reaction monitoring

5-OHCyt:

5-Hydroxycytosine

8-oxoGua:

8-Oxo-7,8-dihydroguanine

8-oxodGuo:

8-Oxo-7,8-dihydro-2′-deoxyguanosine

6–4PP:

Pyrimidine (6–4) pyrimidone

Tg:

5,6-Dihydroxy-5,6-dihydrothymine.

References

  1. K. H. Kraemer, Sunlight and skin cancer: another link revealed, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 11–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. F. R. de Gruijl, Skin cancer and solar UV radiation, Eur. J. Cancer, 1999, 35, 2003–2009.

    Article  PubMed  Google Scholar 

  3. F. R. de Gruijl, H. Rebel, Early events in carcinogenesis - DNA damage, target cells and mutant p53 foci, Photochem. Photobiol., 2008, 84, 382–387.

    Article  PubMed  CAS  Google Scholar 

  4. T. B. H. Buckel, A. M. Goldstein, M. C. Fraser, B. Rogers, M. A. Tucker, Recent tanning bed use: a risk factor for melanoma, Arch. Dermatol., 2006, 142, 485–488.

    Article  PubMed  Google Scholar 

  5. W. Ting, K. Schultz, N. N. Cac, M. Peterson, H. W. Walling, Tanning bed exposure increases the risk of malignant melanoma, Int. J. Dermatol., 2007, 46, 1253–1257.

    Article  PubMed  Google Scholar 

  6. J. Moan, A. C. Porojnicu, A. Dahiback, Ultraviolet radiation and malignant melanoma, Adv. Exp. Med. Biol., 2008, 624, 104–116.

    Article  PubMed  Google Scholar 

  7. J.-S. Taylor, Unraveling the molecular pathway from sunlight to skin cancer, Acc. Chem. Res., 1994, 27, 76–82.

    Article  CAS  Google Scholar 

  8. J. Cadet and J. P. Vigny, The photochemistry of nucleic acids, in Bioorganic Photochemistry: Photochemistry and the Nucleic Acids, ed. H. Morrison, Wiley and Sons, Inc., New York, 1990, pp. 1–272.

    Google Scholar 

  9. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17.

    Article  CAS  PubMed  Google Scholar 

  10. S. Courdavault, C. Baudouin, M. Charveron, M. A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    Article  CAS  PubMed  Google Scholar 

  11. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. J. Danpure, R. M. Tyrrell, Oxygen-dependence of near-UV (365 nm) lethality and the interaction of near-UV and X-rays in two mammalian cell lines, Photochem. Photobiol., 1976, 23, 171–173.

    Article  CAS  PubMed  Google Scholar 

  13. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  14. G. M. Halliday, Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis, Mutat. Res., 2005, 571, 107–120.

    Article  CAS  PubMed  Google Scholar 

  15. J. Cadet, S. Courdavault, J.-L. Ravanat, T. Douki, UVB and UVA radiation-mediated damage to isolated and cellular DNA, Pure Appl. Chem., 2005, 77, 947–961.

    Article  CAS  Google Scholar 

  16. R. M. Tyrrell, UVA (320–380 nm) radiation as an oxidative stress, in Oxidative Stress: Oxidants and Antioxidants, ed. H. Sies, Academic Press, London, 1990, pp. 57–83.

    Google Scholar 

  17. C. S. Foote, Mechanism of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems, Science, 1968, 162, 963–970.

    Article  CAS  PubMed  Google Scholar 

  18. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  19. G. T. Wondrak, M. K. Jacboson, E. L. Jacobson, Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection, Photochem. Photobiol. Sci., 2006, 5, 215–239.

    Article  CAS  PubMed  Google Scholar 

  20. R. Misiaszek, C. Crean, A. Joffe, N. E. Geacintov, V. Shafirovich, Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping, J. Biol. Chem., 2004, 279, 32106–32115.

    Article  CAS  PubMed  Google Scholar 

  21. J. Cadet, T. Douki, J.-L. Ravanat, One-electron oxidation of DNA and inflammation processes, Nat. Chem. Biol., 2006, 2, 348–349.

    Article  CAS  PubMed  Google Scholar 

  22. J. Cadet and P. Di Mascio, Peroxides in biological systems, in Functional Groups in Organic Chemistry–The Chemistry of Peroxides, ed. Z. Rappoport, Wiley and Sons, New York, 2006, vol. 2, pp. 915–1000.

    Google Scholar 

  23. Free-radical induced DNA damage and its repair. A chemical perspective, ed. C. von Sonntag, Springer, Heidelberg, 2006.

    Google Scholar 

  24. Singlet Oxygen, ed. A. A. Frimer, CRC Press, Boca Raton, FL, 1985, Vol 1–4.

    Google Scholar 

  25. A. Greer, Christopher Foote’s discovery of the role of singlet oxygen [1O2 (1Δg)] in photosensitized oxidation reactions, Acc. Chem. Res., 2006, 39, 797–804.

    Article  CAS  PubMed  Google Scholar 

  26. H. Yasui, H. Sakurai, Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA, Biochem. Biophys. Res. Commun., 2000, 269, 131–136.

    Article  CAS  PubMed  Google Scholar 

  27. H. Sakurai, H. Yasui, Y. Yamada, H. Nishimura, M. Shigemoto, Detection of reactive oxygen species in the skin of live mice and rats exposed to UVA light: a research review on chemiluminescence and trails for UVA protection, Photochem. Photobiol. Sci., 2005, 4, 715–720.

    Article  CAS  PubMed  Google Scholar 

  28. G. R. Aitken, J. R. Henderson, S. C. Chang, C. J. McNeil, M. A. Birch-Machin, Direct monitoring of UV-induced free radical generation in HaCat keratinocytes, Clin. Exp. Dermatol., 2007, 32, 722–727.

    Article  CAS  PubMed  Google Scholar 

  29. R. M. Tyrrell, M. Pidoux, Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334, 365 nm) and near-visible (405 nm) radiation, Photochem. Photobiol., 1989, 49, 407–412.

    Article  CAS  PubMed  Google Scholar 

  30. R. M. Tyrrell, S. M. Keyse, The interaction of UVA radiation with cultured cells, J. Photochem. Photobiol., B, 1990, 4, 349–361.

    Article  CAS  Google Scholar 

  31. Z. Briviba, L. O. Klotz, H. Sies, Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems, Biol. Chem., 1997, 378, 1259–1265.

    CAS  PubMed  Google Scholar 

  32. L. O. Kotz, N. J. Holbrook, H. Sies, UVA and singlet oxygen as inducers of cutaneous signaling events, Curr. Probl. Dermatol., 2001, 29, 95–111.

    Article  Google Scholar 

  33. L. O. Kotz, K. D. Kroncke, H. Sies, Singlet oxygen-induced signaling effects in mammalian cells, Photochem. Photobiol. Sci., 2003, 2, 88–94.

    Article  Google Scholar 

  34. S. Grether-Beck, S. Olaizola-Horn, H. Schmitt, M. Grewe, A. Jahnke, J. P. Johnson, K. Briviba, H. Sies, J. Krutmann, Activation of transcription factor AP-2 medaites UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 14586–14591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. M. Tyrrell, Role for singlet oxygen in biological effects of ultraviolet A radiation, Methods Enzymol., 2000, 319, 290–296.

    Article  CAS  PubMed  Google Scholar 

  36. X. X. Huang, F. Bernerd, G. M. Halliday, Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin, Am. J. Pathol., 2009, 174, 1534–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365 nm) radiation: the dose-time dependence of tumor promotion in hairless mice, Carcinogenesis, 1997, 18, 1013–1020.

    Article  PubMed  Google Scholar 

  38. C. S. Sander, H. Chang, F. Hamm, P. Elsner, J. J. Thiele, Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis, Int. J. Dermatol., 2004, 43, 326–335.

    Article  CAS  PubMed  Google Scholar 

  39. R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 6666–6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Q. Wang, R. Setlow, M. Berwick, D. Polsky, D. A. A. Marghoob, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: a review, J. Am. Acad. Dermatol., 2001, 44, 837–846.

    Article  CAS  PubMed  Google Scholar 

  41. R. D. Ley, Dose response for ultraviolet radiation A-induced focal melanocytic hyperplasia and nonmelanoma skin tumors in Monodelphis domestica, Photochem. Photobiol., 2001, 73, 20–23.

    Article  CAS  PubMed  Google Scholar 

  42. C. I. Kowalczuk, M. C. Priestner, A. J. Pearson, R. D. Saunders, S. D. Bouffler, Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation, Int. J. Radiat. Biol., 2006, 82, 781–792.

    Article  CAS  PubMed  Google Scholar 

  43. E. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet V but not ultraviolet A radiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376.

    Article  PubMed  Google Scholar 

  44. D. Mitchell, L. Paniker, G. Sanchez, D. Trono, R. Nairn, The etiology of sunlight-induced melanoma in Xiphophorus hybrid fish, Mol. Carcinog., 2007, 46, 679–683.

    Article  CAS  PubMed  Google Scholar 

  45. J. Cadet, J. T. Douki, J.-P. Pouget, J.-L. Ravanat, S. Sauvaigo, Effects of UV and visible radiations on cellular DNA, Curr. Probl. Dermatol., 2001, 29, 62–73.

    Article  CAS  PubMed  Google Scholar 

  46. C. Kielbassa, L. Roza, B. Epe, Effects of UV and visible radiations on cellular DNA, Carcinogenesis, 1997, 18, 811–816.

    Article  CAS  PubMed  Google Scholar 

  47. C. Kielbassa, B. Epe, DNA damage induced by ultraviolet and visible light and its wavelength dependence, Methods Enzymol., 2000, 319, 436–445.

    Article  CAS  PubMed  Google Scholar 

  48. J.-P. Pouget, T. Douki, M.-J. Richard, J. Cadet, DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay, Chem. Res. Toxicol., 2000, 13, 541–549.

    Article  CAS  PubMed  Google Scholar 

  49. A. Besaratinia, S.-i. Kim, G. P. Pfeifer, Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells, FASEB J., 2008, 22, 2379–2392.

    Article  CAS  PubMed  Google Scholar 

  50. T. Douki, D. Perdiz, P. Grof, Z. Kuluncsics, E. Moustacchi, J. Cadet, E. Sage, Oxidation of guanine in cellular DNA by solar UV radiation: biological role, Photochem. Photobiol., 1999, 70, 184–190.

    Article  CAS  PubMed  Google Scholar 

  51. A. Fisher-Nilsen, S. Loft, K. G. Jensen, Effect of ascorbate and 5-aminosalisylic acid on light-induced 8-hydroxydeoxyguanosine formation in V79 Chinese hamster cells, Carcinogenesis, 1993, 14, 2431–2433.

    Article  Google Scholar 

  52. J. E. Rosen, A. K. Prahalad, G. M. Williams, 8-Oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation, Photochem. Photobiol., 1996, 64, 117–122.

    Article  CAS  PubMed  Google Scholar 

  53. W. G. Warmer, R. R. Weiss, In vitro photooxidation of nucleic acids by ultraviolet radiation, Photochem. Photobiol., 1997, 65, 560–563.

    Article  Google Scholar 

  54. E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  55. X. Zhang, B. S. Rosenstein, X. Wang, M. Lebwohl, M. D. L. Mitchell, H. Wie, Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells, Photochem. Photobiol., 1997, 65, 119–124.

    Article  CAS  PubMed  Google Scholar 

  56. P. Duez, M. Hanocq, J. Dubois, Photodynamic DNA damage mediated by d-aminolevulinic acid-induced porphyrin, Carcinogenesis, 2001, 22, 771–778.

    Article  CAS  PubMed  Google Scholar 

  57. A. Besaratinia, T. W. Synold, B. Xi, G. P. Pfeifer, G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet A radiation in mammalian cells, Biochemistry, 2004, 43, 8169–8177.

    Article  CAS  PubMed  Google Scholar 

  58. A. Besaratinia, T. W. Synold, H. H. Chen, C. Chang, B. Xi, A. D. Riggs, G. P. Pfeifer, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10058–10063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. T. Negishi, K. Kawai, R. Arakawa, S. Higashi, T. Nakamura, M. Watanabe, H. Kasai, K. Fujikawa, Increased levels of 8-hydroxy-2’-deoxyguanosine in Drosophila larval DNA after irradiation with 364-nm laser light but not with X-rays, Photochem. Photobiol., 2007, 83, 658–663.

    Article  CAS  PubMed  Google Scholar 

  60. A. Campalans, R. Amouroux, A. Bravard, B. Epe, J. P. Radicella, UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles, J. Cell Sci., 2007, 120, 23–32.

    Article  CAS  PubMed  Google Scholar 

  61. L. J. Lipinski, N. Hoehr, S. J. Mazur, G. L. Dianov, S. Sentürker, M. Dizdaroglu, V. A. Bohr, Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells, Nucleic Acids Res., 1999, 27, 3153–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. K. Wischermann, P. Boukamp, P. Schmezer, Improved alkaline comet assay protocol for adherent HaCaT keratinocytes to study UVA-induced DNA damage, Mutat. Res., 2007, 630, 122–128.

    Article  CAS  PubMed  Google Scholar 

  63. L. J. Fell, N. D. Paul, T. J. McMillan, Role for non-homologous end-joining in the repair of UVA-induced DNA damage, Int. J. Radiat. Biol., 2002, 78, 1023–1027.

    Article  CAS  PubMed  Google Scholar 

  64. A. Rapp, K. O. Greulich, After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available, J. Cell Sci., 2004, 117, 4935–4945.

    Article  CAS  PubMed  Google Scholar 

  65. K. Wischermann, S. Popp, S. Moshir, K. Scharfetter-Kochanek, M. Wlaschek, F. de Gruijl, W. Hartschuh, R. Greinert, B. Volkmer, A. Faust, A. Rapp, P. Schmezer, P. Boukamp, UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes, Oncogene, 2008, 27, 4269–4280.

    Article  CAS  PubMed  Google Scholar 

  66. C. L. Limoli, E. Giedzinski, W. M. Bonner, J. E. Cleaver, UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 233–238.

    Article  CAS  PubMed  Google Scholar 

  67. G. A. Garinis, J. R. Mitchell, M. J. Moorhouse, K. Hanada, H. de Waard, D. Vandeputte, J. Jans, K. Brand, M. Smid, P. J. van der Spek, J. H. Hoeijmakers, R. Kanaar, G. T. van der Horst, Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks, EMBO J., 2005, 24, 3952–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J. Cadet, T. Douki, D. Gasparutto, J.-L. Ravanat, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat. Res., 2003, 531, 5–23.

    Article  CAS  PubMed  Google Scholar 

  69. J. Cadet, T. Douki, J.-L. Ravanat, Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cells, Acc. Chem. Res., 2008, 41, 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  70. P. Dedon, The chemical toxicology of 2-deoxyribose oxidation in DNA, Chem. Res. Toxicol., 2008, 21, 206–219.

    Article  PubMed  Google Scholar 

  71. J.-P. Pouget, S. Frelon, J.-L. Ravanat, I. Testard, F. Odin, J. Cadet, Formation of modified DNA to DNA in cells exposed to either gamma radiation or high-LET particles, Radiat. Res., 2002, 157, 589–595.

    Article  CAS  PubMed  Google Scholar 

  72. T. Douki, J.-L. Ravanat, J.-P. Pouget, I. Testard, J. Cadet, Minor contribution of direct ionization to DNA bas damage induced by heavy ions, Int. J. Radiat. Biol., 2006, 82, 119–127.

    Article  CAS  PubMed  Google Scholar 

  73. G. R. Martinez, J.-L. Ravanat, M. H. G. Medeiros, J. Cadet, P. Di, Mascio, Synthesis of a naphthalene endoperoxide as a source of 18O-labeled singlet oxygen for mechanistic studies, J. Am. Chem. Soc., 2000, 122, 10212–1013.

    Article  CAS  Google Scholar 

  74. G. Petroselli, R. Erra-Balsells, F. M. Cabrerizo, C. Lorente, A. L. Capparelli, A. M. Braun, E. Oliveros, A. H. Thomas, Photosensitization of 2’-deoxyadenosine-5’-monophosphate by pterin, Org. Biomol. Chem., 2007, 5, 2792–2799.

    Article  CAS  PubMed  Google Scholar 

  75. J.-L. Ravanat, C. Saint-Pierre, P. Di Mascio, G. R. Martinez, M. H. G. Medeiros, J. Cadet, Damage to isolated DNA mediated by singlet oxygen, Helv. Chim. Acta, 2001, 84, 3702–3709.

    Article  CAS  Google Scholar 

  76. J.-L. Ravanat, P. Di Mascio, G. R. Martinez, J. Cadet, Singlet oxygen induces oxidation of cellular DNA, J. Biol. Chem., 2000, 275, 40601–40604.

    Article  CAS  PubMed  Google Scholar 

  77. J.-L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, J. Cadet, Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen, Arch. Biochem. Biophys., 2004, 423, 23–30.

    Article  CAS  PubMed  Google Scholar 

  78. J.-L. Ravanat, S. Sauvaigo, S. Caillat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, A. Favier, J. Cadet, Singlet oxygen-mediated damage to cellular DNA as determined by the comet assay associated with DNA repair enzymes, Biol. Chem., 2004, 385, 17–20.

    Article  CAS  PubMed  Google Scholar 

  79. J. Cadet, J.-L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights, Photochem. Photobiol., 2006, 82, 1219–1225.

    Article  CAS  PubMed  Google Scholar 

  80. G. Petroselli, M. L. Dántola, F. M. Cabrerizo, A. L. Capparelli, C. Lorente, E. Oliveros, A. H. Thomas, Oxidation of 2’-deoxyguanosine 5’-monophosphate photoinduced by pterin: type I versus type II mechanism, J. Am. Chem. Soc., 2008, 130, 3001–3011.

    Article  CAS  PubMed  Google Scholar 

  81. C. Sheu, C. S. Foote, Endoperoxide formation in a guanosine derivative, J. Am. Chem. Soc., 1993, 115, 10446–10447.

    Article  CAS  Google Scholar 

  82. C. Sheu, P. Kang, S. Khan, C. S. Foote, Low-temperature photosensitized oxidation of a guanosine derivative and formation of an imidazole ring-opened product, J. Am. Chem. Soc., 2002, 124, 3905–3913.

    Article  CAS  PubMed  Google Scholar 

  83. P. Kang, C. S. Foote, Formation of transient intermediates in low-temperature photosensitized oxidation of an 8-(13)C-guanosine, J. Am. Chem. Soc., 2002, 124, 4865–4873.

    Article  CAS  PubMed  Google Scholar 

  84. J. C. Niles, J. S. Wishnok, S. R. Tannenbaum, Spiroiminodihydantoin is the major product of 8-oxo-7,8-dihydroguanosine with peroxynitrite in the presence of thiols and guanosine oxidation by methylene blue, Org. Lett., 2001, 3, 963–966.

    CAS  PubMed  Google Scholar 

  85. J.-L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, J. Cadet, Singlet oxygen oxidation of 2’-deoxyguanosine. Formation and mechanistic insights, Tetrahedron, 2006, 62, 10709–10715.

    Article  CAS  Google Scholar 

  86. W. Eiberger, B. Volkmer, R. Amouroux, C. Dhérin, J. P. Radicella, B. Epe, Oxidative stress impairs the repair of oxidative DNA base modifications in human skin fibroblasts, and melanoma cells, DNA Repair, 2008, 7, 912–921.

    Article  CAS  PubMed  Google Scholar 

  87. A. Valencia, I. Kochevar, Nox1-based NADP oxidaseis the major source of UVA-induced reactive oxygen species in human kératinocytes, J. Invest. Dermatol., 2008, 128, 214.

    Article  CAS  PubMed  Google Scholar 

  88. C. Didier, N. Emonet-Piccardi, J. C. Béani, J. Cadet, M.-J. Richard, L-arginine increases UVA cytotoxicity in irradiated human keratinocyte cell line: potential role of nitric oxide, FASEB J., 1999, 13, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  89. S. Perrier, J. Hau, D. Gasparutto, J. Cadet, A. Favier, J.-L. Ravanat, Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide, J. Am. Chem. Soc., 2006, 128, 5703–5710.

    Article  CAS  PubMed  Google Scholar 

  90. M. H. G. Medeiros, Exocyclic DNA adducts as biomarkers of lipid oxidation and predictors of diseases: challenges in developping sensitive and specific methods for clinical studies, Chem. Res. Toxicol., 2009, 22, 419–425.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cadet.

Additional information

† This article was published as part of the themed issue in honour of Esther Oliveros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadet, J., Douki, T., Ravanat, JL. et al. Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 8, 903–911 (2009). https://doi.org/10.1039/b905343n

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b905343n

Navigation