Issue 42, 2009

Improving PEMfuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems

Abstract

This study presents clear and compelling experimental evidence for the significant beneficial effects of nitrogen-doping on the activity of Pt/C catalyst systems for the methanol oxidation reaction. This evidence is obtained through the deployment of geometrically well-defined model catalytic systems consisting of tunable assemblies of Pt catalyst nanoparticles deposited onto undoped, Ar-doped, and N-doped highly oriented pyrolytic graphite (HOPG) substrates. Both Ar- and N-doping were achieved via ion beam implantation, and Pt was electrodeposited from solutions of H2PtCl6 in aqueous HClO4. Morphology from scanning electron microscopy (SEM) and aqueous electrochemical analysis of catalytic activity was utilized to examine the effect of N-doping compared to the undoped and Ar-doped control samples. The results strongly support the theory that doping nitrogen into a graphite support significantly affects both the morphology and the behavior of the overlying Pt nanoparticles. In particular, nitrogen-doping was observed to cause a significant decrease in the average Pt nanoparticle size, an increase in the Pt nanoparticle dispersion, and a significant increase in catalytic activity and durability for methanol oxidation. The model catalytic systems demonstrated here represent a versatile platform to study catalyst-support interactions in electrocatalytically relevant nanoparticle systems.

Graphical abstract: Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems

Article information

Article type
Paper
Submitted
03 Jun 2009
Accepted
20 Jul 2009
First published
04 Sep 2009

J. Mater. Chem., 2009,19, 7830-7838

Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems

Y. Zhou, R. Pasquarelli, T. Holme, J. Berry, D. Ginley and R. O'Hayre, J. Mater. Chem., 2009, 19, 7830 DOI: 10.1039/B910924B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements