Skip to main content
Log in

Photophysical properties and photodynamic activity of octacationic oxotitaniumiv phthalocyanines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical and photosensitizing properties of two octacationic oxotitanium phthalocyanines (TiOPcs), bearing pyridiniomethyl or cholinyl substituents, have been studied in aqueous and alcohol solutions. In water, both compounds were monomeric with the high quantum yields of fluorescence (ΦF = 0.17-0.19) and singlet oxygen formation (ΦΔ = 0.4-0.5). The ΦF and ΦΔ of both phthalocyanines decreased with the increase of solvent hydrophobicity from water to ethanol. This effect was much stronger in alcohol solutions of the pyridiniomethyl-substituted phthalocyanine and probably results from aggregation of TiOPc molecules caused by association of chloride anions with phthalocyanine cationic groups. Evidence is presented that under illumination aqueous TiOPc solutions also produce hydroxyl radicals, which probably appear owing to photocleavage of water molecules. The quantum yield of OH formation was (3-5) × 10-5 after argon purging and twice as much in the presence of air. It is shown that irradiation of TiOPc solutions causes photobleaching of TiOPcs. The photobleaching quantum yield in water was found to be about 1 × 10-4. The data suggest that photobleaching occurs owing to the reactivity of hydroxyl radicals, though singlet oxygen is generated by TiOPcs much more efficiently. The phototoxicity of the tested TiOPcs toward bacteria has been revealed. It is proposed that both OH and 1O2 might be responsible for the observed bactericidal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nyokong, Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines, Coord. Chem. Rev., 2007, 251, 1707–1722.

    Article  CAS  Google Scholar 

  2. H. Mustroph, M. Stollenwerk, V. Bressau, Current developments in optical data storage with organic dyes, Angew. Chem., Int. Ed., 2006, 45, 2016–2035.

    Article  CAS  Google Scholar 

  3. G. Torre, P. Vazquez, F. Agullo-Lopez, T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 2004, 104, 3723–3750.

    Article  PubMed  CAS  Google Scholar 

  4. D. Dini, M. Hanack, Phthalocyanines as materials for advanced technologies: some examples, J. Porphyrins Phthalocyanines, 2004, 8, 915–933.

    Article  CAS  Google Scholar 

  5. Y. Li, T. Pritchett, J. Huang, M. Ke, P. Shao, S. Wenfang, Photophysics and nonlinear absorption of peripheral-substituted zinc phthalocyanines, J. Phys. Chem. A, 2008, 112 31. 7200–7207.

    Article  PubMed  CAS  Google Scholar 

  6. E. A. Lukyanets, Phthalocyanines as photosensitizers in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 1999, 3, 424–432.

    Article  CAS  Google Scholar 

  7. N. A. Kuznetsova, E. V. Pykhtina, L. A. Ulanova, V. M. Derkacheva, V. M. Negrimovsky, O. L. Kaliya, E. A. Lukyanets, Phthalocyanine-sensitized hydroxyl radicals photogeneration in aqueous suspensions, Zh. Obshch. Khim., 1995, 65 9. 1541–1546.

    CAS  Google Scholar 

  8. P. Haisch, G. Winter, M. Hanack, Soluble alkyl- and alkoxy-substituted titaniumoxo phthalocyanines: synthesis and photoconductivity, Adv. Mater., 1997, 9 4. 316–321.

    Article  CAS  Google Scholar 

  9. P. Ghosez, R. Cote, L. Gastonguay, G. Veilleux, G. Denes, J. P. Dodelet, Characterization of a highly photoactive molecular semiconductor: oxotitanium phthalocyanine, Chem. Mater., 1993, 5, 1581–1590.

    Article  CAS  Google Scholar 

  10. W.-F. Law, R. C. W. Liu, J. Jiang, D. K. P. Ng, Synthesis and spectroscopic properties of octasubstituted (phthalocyaninato)titanium(IV) complexes, Inorg. Chim. Acta, 1997, 256, 147–150.

    Article  CAS  Google Scholar 

  11. G. Mbambisa, P. Tau, E. Antunes, T. Nyokong, Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups, Polyhedron, 2007, 26, 5355–5364.

    Article  CAS  Google Scholar 

  12. P. Tau, T. Nyokong, Synthesis, electrochemical and photophysical properties of phthalocyaninatooxotitanium(IV) complexes tetra-substituted at the a and ß positions with arylthio groups, Dalton Trans., 2006. 4482–4490.

    Google Scholar 

  13. P. Tau, T. Nyokong, Synthesis and electrochemical characterization of a- and ß-tetra-substituted oxo(phthalocyaninato) titanium(IV) complexes, Polyhedron, 2006, 25, 1802–1810.

    Article  CAS  Google Scholar 

  14. P. Tau, T. Nyokong, Comparative photocatalitic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of 1-hexene, J. Mol. Catal. A: Chem., 2007, 273, 149–155.

    Article  CAS  Google Scholar 

  15. D. Atilla, M. Durmus, O. Yilmaz, A. Gurek, V. Ahsen, T. Nyokong, Synthesis, photophysical and photochemical properties of poly(oxyethylene)-substituted phthalocyaninato oxotitanium(IV) complexes, Eur. J. Inorg. Chem., 2007. 3573–3581.

    Google Scholar 

  16. P. Kluson, M. Drobek, T. Strasak, J. Krysa, M. Karaskova, J. Rakusan, Sulphonated phthalocyanines as effective oxidation photocatalysts for visible and UV light regions, J. Mol. Catal. A: Chem., 2007, 272, 213–219.

    Article  CAS  Google Scholar 

  17. E. V. Pykhtina, L. A. Ulanova, M. A. Kovaleva, V. M. Negrimovsky, N. A. Kuznetsova, O. L. Kaliya, E. A. Lukyanets, ESR study of hydroxyl radicals photogeneration in aqueous solutions of octakis(pyridiniomethyl) oxotitanium phthalocyanine, Russ. J. Phys. Chem., 2000, 74 12. 2240–2247.

    CAS  Google Scholar 

  18. M. Barthel, D. Dini, S. Vagin, M. Hanack, An easy route for the synthesis of new axially substituted titanium(IV) phthalocyanines, Eur. J. Org. Chem., 2002. 3756–3762.

    Google Scholar 

  19. Y. Arslanoglu, A. Sevim, E. Hamuryudan, A. Gul, Near-IR absorbing phthalocyanines, Dyes Pigm., 2006, 68, 129–132.

    Article  CAS  Google Scholar 

  20. E. A. Lukyanets, V. M. Negrimovsky, O. A. Yuzhakova, O. L. Kaliya, N. A. Kuznetsova, E. V. Pykhtina, L. A. Ulanova, M. A. Kovaleva, Yu. M. Luzhkov, G. N. Vorozhtsov, G. A. Meerovich and N. L. Torshina, RF Patent 2 164 136, 1998.

    Google Scholar 

  21. V. Nardello, J. M. Aubry, Synthesis and properties of a new cationic water-soluble trap of singlet molecular oxygen, Tetrahedron Lett., 1997, 38, 7361–7364.

    Article  CAS  Google Scholar 

  22. K. Kalyanasundaram, M. Neumann-Spallart, Photophysical and redox properties of water-soluble porphyrins in aqueous media, J. Phys. Chem., 1982, 86, 5163–5169.

    Article  CAS  Google Scholar 

  23. A. T. Gradyushko, A.N. Sevchenko, K. N. Solovyov, M. P. Tsvirko, Energetics of photophysical processes in chlorophyll-like molecules, Photochem. Photobiol., 1970, 11, 387–400.

    Article  PubMed  CAS  Google Scholar 

  24. A. A. Krasnovsky, Jr, Photodynamic action and singlet oxygen, Biofizika, 2004, 49, 305–321.

    Google Scholar 

  25. A. A. Krasnovsky, Jr., Singlet oxygen and primary mechanisms of photodynamic therapy and photodynamic diseases, in, Photodynamic therapy at the cellular level, ed. A. B. Uzdensky, Research Signpost, Kerala, India, 2007, 17–62.

    Google Scholar 

  26. D. A. Butorina, A. A. Krasnovsky, Jr., A. V. Priezzev, Investigation of the kinetic parameters of singlet molecular oxygen in aqueous porphyrin solutions. Influence of detergents and the quencher sodium azide, Biofizika, 2003, 48, 189–196.

    Google Scholar 

  27. A. A. Krasnovsky, Jr., Luminescence and photochemical studies of singlet oxygen photonics, J. Photochem. Photobiol., A, 2008, 196, 210–218.

    Article  CAS  Google Scholar 

  28. F. Wilkinson, W. P. Helman, A. B. Ross, Quantum yields of the photosensitized formation of the lowest electronically excited singlet states of molecular oxygen, J. Phys. Chem. Ref. Data, 1993, 22 2. 113–262.

    Article  CAS  Google Scholar 

  29. C. Tanielian, C. Wolf, M. Esch, Singlet oxygen production in water: Aggregation and charge-transfer effects, J. Phys. Chem., 1996, 100, 6555–6560.

    Article  CAS  Google Scholar 

  30. A. E. Nedachin, T. V. Doskina, R. A. Dmitrieva, N. Yu. Tishkova, S. G. Sidorenko, G. M. Trukhina, N. N. Moiseenko, E. V. Sarafanyuk, G. P. Kashkarova, N. S. Krivopalova, R. S. Sorokina, N. Ya. Salova, Z. G. Malisheva, N. A. Kozhevnikova, T. A. Kozlova, N. M. Bavikina, N. A. Rusanova, I. V. Vlasova and Yu. P. Pivovarov, Sanitary-microbiological analysis of potable water, MUK 4.2.1018-01, Federal Center of State Epidemiological Inspectorate of Russian Health Ministry, Moscow, 2001

    Google Scholar 

  31. B. M. Dzhagarov, E. I. Sagun, V. A. Ganza, G. P. Gurinovich, The mechanism of quenching the triplet state of chlorophyll and related compounds by molecular oxygen, Russ. Chem. Phys., 1987, 6 7. 919–928.

    CAS  Google Scholar 

  32. S. L. Murov, I. Charmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker Inc., New York, Basel, Hong Kong, 1993, p. 290.

    Google Scholar 

  33. D. Makarov, O. Yuzhakova, L. Slivka, N. Kuznetsova, V. Negrimovsky, O. Kaliya, E. Lukyanets, Cationic Zn and Al phthalocyanines: synthesis, spectroscopy and photosensitizing properties, J. Porphyrins Phthalocyanines, 2007, 11, 586–595.

    Article  CAS  Google Scholar 

  34. E. Finkelstein, G. Rosen, E. Rauckman, Spin trapping of superoxide and hydroxyl radical: practical aspects, Arch. Biochem. Biophys., 1980, 200, 1–16.

    Article  PubMed  CAS  Google Scholar 

  35. H. Hoebeke, L. Schuitmaker, T. Jannink, A. Dubbelman, A. Jacobs, A. Van de Vorst, Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a, Photochem. Photobiol., 1997, 66 4. 502–508.

    Article  PubMed  CAS  Google Scholar 

  36. M. Collet, M. Hoebeke, J. Piette, A. Jakobs, L. Lindqvist, A. Van de Vorst, Photosensitized generation of hydroxyl radical by eight new sulfur and selenium analogs of psoralen, J. Photochem. Photobiol., B, 1996, 35 3. 221–231.

    Article  CAS  Google Scholar 

  37. X. Zhang, H. Xu, Substituted phthalocyanine-sensitized photochemical generation of superoxide anion radical, J. Photochem. Photobiol., B, 1994, 22, 235–239.

    Article  CAS  Google Scholar 

  38. T. G. Gantchev, M. G. Kaltchev, G. P. Gotchev, Intermolecular interactions and photo-generation of free radicals in methal-free tetrasulfophthalocyanine-tryptophan systems, Int. J. Radiat. Biol., 1991, 60, 597–611.

    Article  PubMed  CAS  Google Scholar 

  39. J. R. Harbour, J. R. Bolton, The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls in vivo and in vitro, Photochem. Photobiol., 1978, 28, 231–234.

    Article  CAS  Google Scholar 

  40. A. Alegria, A. Ferrer, E. Sepulveda, Photochemistry of water-soluble quinones. Production of a water-derived spin adduct, Photochem. Photobiol., 1997, 66 4. 436–442.

    Article  PubMed  CAS  Google Scholar 

  41. N. d’Alessandro, L. Tonucci, A. Morvillo, L. K. Dragani, M. Di Deo, M. Bressan, Thermal stability and photostability of water solutions of sulfophthalocyanines of Ru(II), Cu(II), Ni(II), Fe(III) and Co(II), J. Organomet. Chem., 2005, 690, 2133–2141.

    Article  CAS  Google Scholar 

  42. P. R. Ogilby, C. S. Foote, Chemistry of singlet oxygen. 36. Singlet molecular oxygen (1Δg) luminescence in solution following pulsed laser excitation. Solvent deuterium isotope effects on the lifetime of singlet oxygen, J. Am. Chem. Soc., 1982, 104, 2069–2070.

    Article  CAS  Google Scholar 

  43. S. Y. Egorov, A. A. Krasnovsky, Jr., Photosensitized luminescence of singlet oxygen under pulse laser excitation. Decay kinetics in aqueous solutions, Biofizika, 1983, 28, 497–498.

    CAS  Google Scholar 

  44. M. C. DeRosa, R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, N., Makarov, D., Yuzhakova, O. et al. Photophysical properties and photodynamic activity of octacationic oxotitaniumiv phthalocyanines. Photochem Photobiol Sci 8, 1724–1733 (2009). https://doi.org/10.1039/b9pp00054b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00054b

Navigation