Volume 149, 2011

Small-molecule diagnostics based on functional DNA nanotechnology: a dipstick test for mercury

Abstract

Detecting small molecular targets such as metal ions is just as important as detecting large molecules such as DNA, RNA and proteins, but the field of metal ion sensors has not yet been well developed. A good example of a metal ion target is mercury, which is highly toxic, widely distributed in the environment and affects human health. To develop a diagnostic platform for metal ions, we demonstrate that functional DNA-linked gold nanoparticles (AuNPs) can quickly and simply detect and quantify Hg2+ ions in aqueous solution, with high sensitivity and selectivity over competing metal ions. A linker DNA molecule containing thymine residues and sequences complementary to the DNA on the AuNPs was designed to aggregate DNA-functionalized AuNPs. When Hg2+ ions were introduced into this system, they induced the linker DNA to fold by forming thymine–Hg2+thymine bonds. The linker DNA's folding caused the AuNPs to rapidly disassemble, which caused a discernable color change in the solution from purple to red. The limit of detection for Hg2+ in the present method is 5.4 nM, which is below the 10 nM maximum contaminant level defined by the US Environmental Protection Agency (EPA) for drinking water. Our results show that this Hg2+ detection method has excellent selectivity over other divalent metal ions (e.g.Pb2+, Cu2+, Mn2+, Co2+, Zn2+, Cd2+, Mg2+, Ca2+, and Ba2+). This system has been converted into a dipstick test using lateral-flow devices, making it even more practical for point-of-care diagnostics.

Article information

Article type
Paper
Submitted
01 Jun 2010
Accepted
24 Jul 2010
First published
12 Oct 2010

Faraday Discuss., 2011,149, 125-135

Small-molecule diagnostics based on functional DNA nanotechnology: a dipstick test for mercury

S. Torabi and Y. Lu, Faraday Discuss., 2011, 149, 125 DOI: 10.1039/C005404F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements