Skip to main content

Advertisement

Log in

Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters

  • Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m−2), sun light (600 W m−2) and an halogen lamp (40–1690 W m−2). Phage suspensions and two cationic photosensitizers (Tetra-Py+-Me, Tri-Py+-Me-PF) at concentrations of 0.5, 1.0 and 5.0 μM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 μM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. M. Jemli, Z. Alouini, S. Sabbahi, and M. Gueddari, Destruction of fecal bacteria in wastewater by three photosensitizers, J. Environ. Monit., 2002, 4, 511–516.

    Article  CAS  PubMed  Google Scholar 

  2. M. Magaraggia, F. Faccenda, A. Gandolfi, and G. Jori, Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact, J. Environ. Monit., 2006, 8, 923–931.

    Article  CAS  PubMed  Google Scholar 

  3. C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, L. Costa, E. Alves, A. Oliveira, A. Cunha, and A. Almeida, Antimicrobial photodynamic activity of porphyrin derivatives: Potential application on medical and water disinfection, J. Porphyrins Phthalocyanines, 2009, 13, 574–577.

    Article  CAS  Google Scholar 

  4. F. H. E. Schagen, A. C. E. Moor, S. C. Cheong, S. J. Cramer, H. Ormondt, A. J. Eb, T. M. A. R. Dubbelman, and R. C. Hoeben, Photodynamic treatment of adenoviral vectors with visible light: an easy and convenient method for viral inactivation, Gene Ther., 1999, 6, 873–881.

    Article  CAS  PubMed  Google Scholar 

  5. A. N. Vzorov, D. W. Dixon, J. S. Trommel, L. G. Marzilli, and R. W. Compans, Inactivation of human immunodeficiency virus type 1 by porphyrins, Antimicrob. Agents Chemother., 2002, 46, 3917–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. J. Wagner, Virus Inactivation in Blood Components by Photoactive Phenothiazine Dyes, Transfus. Med. Rev., 2002, 16, 61–66.

    Article  PubMed  Google Scholar 

  7. B M. J. Casteel, K. Jayaraj, G. Avram, L. M. Bail, and M. D. Sobsey, Photoinactivation of hepatitis A virus by synthetic porphyrins, Photochem. Photobiol., 2004, 80, 294–300.

    Article  CAS  PubMed  Google Scholar 

  8. B. Williams Horowitz, B. Williams, and S. Rywkin, Inactivation of viruses in blood with aluminium phthalocyanines derivatives, Transfusion, 1991, 31, 102–108.

    Article  CAS  PubMed  Google Scholar 

  9. E. M. P. Silva, F. Giuntini, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, A. M. S. Silva, M. G. Santana-Marques, A. J. Ferrer-Correia, J. A. S. Cavaleiro, M. F. Caeiro, R. R. Duarte, S. A. P. Tavares, I. N. Pegado, B. d’Almeida, A. P. A. De Matos, and M. L. Valdeira, Synthesis of cationic beta-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1, Bioorg. Med. Chem. Lett., 2005, 15, 3333–3337.

    Article  CAS  PubMed  Google Scholar 

  10. J. P. C. Tomé, E. M. P. Silva, A. Pereira, C. M. A. Alonso, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, S. A. P. Tavares, R. R. Duarte, M. F. Caeiro, and M. L. Valdeira, Synthesis of neutral and cationic tripyridylporphyrin-D-galactose conjugates and the photoinactivation of HSV-1, Bioorg. Med. Chem., 2007, 15, 4705–4713.

    Article  PubMed  CAS  Google Scholar 

  11. J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. F. Mendonça, I. N. Pegado, R. Duarte, and M. L. Valdeira, Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2, Bioorg. Med. Chem., 2005, 13, 3878–3888.

    Article  PubMed  CAS  Google Scholar 

  12. W. Wainwright, Photoantimicrobials - a PACT against resistance and infection,, Drugs Future, 2004, 29, 85–93.

    Article  CAS  Google Scholar 

  13. J. Lenard, and R. Vanderoef, Photoinactivation of influenza virus fusion and infectivity by rose bengal, Photochem. Photobiol., 1993, 58, 527–531.

    Article  CAS  PubMed  Google Scholar 

  14. H. Abe, K. Ikebuchi, S. J. Wagner, M. Kuwabara, N. Kamo, and S. Sekiguchi, Potential involvement of both type I and type II mechanisms in Ml 13 virus inactivation by methylene blue photosensitization, Photochem. Photobiol., 1997, 66, 204–208.

    Article  CAS  PubMed  Google Scholar 

  15. J. V. Lee, S. R. Dawson, S. Ward, S. B. Surman, and K. R. Neal, Bacteriophages are a better indicator of illness rates than bacteria amongst users of a water course fed by a lowland river, Water Sci. Technol., 1997, 35, 165–170.

    Article  CAS  Google Scholar 

  16. S. J. Wagner, A. Skripchenko, J. W. F. D. Robinette, and L. Cincotta, Factors affecting virus photoinactivation by a series of phenothiazine dyes, Photochem. Photobiol., 1998, 67, 343–398.

    Article  CAS  PubMed  Google Scholar 

  17. M. Egyeki, G. Turóczy, Zs. Majer, K. Tóth, A. Fekete, Ph. Maillard, G. Csík, Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action., Biochim. Biophys. Acta, Gen. Subj., 2003, 1624, 115–124.

    Article  CAS  Google Scholar 

  18. K. Zupán, L. Herényi, K. Tóth, Z. Majer, G. Csík, Binding of cationic porphyrin to isolated and encapsidated viral DNA analyzed by comprehensive spectroscopic methods, Biochemistry, 2004, 43, 9151–9159.

    Article  PubMed  CAS  Google Scholar 

  19. M. Embleton, S. Nair, W. Heywood, D. Menon, B. Cookson, and M. Wilson, Development of a novel targeting for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus, Antimicrob. Agents Chemother., 2005, 49, 3690–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Almeida, A. Cunha, N. C. M. Gomes, E. Alves, L. Costa, M. A. F. Faustino, Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants, Mar. Drugs, 2009, 7, 268–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Costa, E. Alves, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, and A. Almeida, Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect, Photochem. Photobiol. Sci., 2008, 7, 415–422.

    Article  CAS  PubMed  Google Scholar 

  22. E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini, and U. Mazzucato, Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins, Photochem. Photobiol., 2002, 75, 462–470.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Lukšiene, New approach to inactivation of harmful and pathogenic microorganisms by photosensitization, Food Technol. Biotechnol., 2005, 43, 411–418.

    Google Scholar 

  24. Z. Lukšiene, and A. Zukauskas, Prospects of photosensitization in control of pathogenic and harmful micro-organisms, J. Appl. Microbiol., 2009, 107, 1415–1424.

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Prates, E. G. da Silva, A. M. Yomada, Jr., L. C. Suzuki, C. R. Paula, and M. S. Ribeiro, Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner, Laser Phys., 2009, 19, 1038–1044.

    Article  CAS  Google Scholar 

  26. C. Kasturi, and M. S. Platz, Inactivation of lambda phage with 658 nm light using a DNA binding porphyrin sensitizer, Photochem. Photobiol., 1992, 56, 427–429.

    Article  CAS  PubMed  Google Scholar 

  27. E. Alves, L. Costa, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, S. Mendo, and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70–83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. Schindl, B. Rosado-Sholosser, and F. Trautinger, Reciprocity regulation in photobiology: an overview [in German]., Hautarzt, 2001, 52, 779–785.

    Article  CAS  PubMed  Google Scholar 

  29. W. Schmidt, Optical Spectroscopy in Chemistry and Live Sciences, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  30. A. Oliveira, A. Almeida, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, and A. Cunha, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores, J. Appl. Microbiol., 2009, 106, 1986–1995.

    Article  CAS  PubMed  Google Scholar 

  31. M. E. Milanesio, M. G. Alvarez, J. J. Silber, V. Rivarola, and E. N. Durantini, Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media, Photochem. Photobiol. Sci., 2003, 2, 926–933.

    Article  CAS  PubMed  Google Scholar 

  32. D. Lazzeri, M. Rovera, L. Pascual, and E. N. Durantini, Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution, Photochem. Photobiol., 2004, 80, 286–293.

    Article  CAS  PubMed  Google Scholar 

  33. D. A. Caminos, M. B. Spesia, and E. N. Durantini, Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl) phenyl groups, Photochem. Photobiol. Sci., 2006, 5, 56–65.

    Article  CAS  PubMed  Google Scholar 

  34. L. F. Paula, R. O. Santos, H. D. Menezes, J. R. Britto, J. B. Vieira, Jr., P. P. Gomtijo, Filho, and C. A. Oliveira, A comparative study of irradiation systems for photoinactivation of microorganisms, J. Braz. Chem. Soc., 2009, 1–7.

    Google Scholar 

  35. F. Ghetti, and G. Checcucci, Action spectroscopy In R. Jennings, G. Zucchelli, F. Ghetti and G. Colombetti, (ed.) Light as an energy source and information carrier in plant physiology. NATO ASI Series A287, Plenum Press, New York, 1996, pp. 275–283.

    Google Scholar 

  36. Y. Qin, X. Luan, L. Bi, G. He, X. F. Bai, C. Zhou, and Z. Zhang, Toluidine blue-mediated photoinactivation of peridontal pathogens from supragingival plaques, Lasers Med. Sci., 2007, 23, 49–54.

    Article  PubMed  Google Scholar 

  37. F. Gabor, K. Szocs, P. Maillard, and G. Csik, Photobiological activity of exogenous and endogenous porphyrin derivatives in Escherichia coli and Enterococcus hirae cells, Radiat. Environ. Biophys., 2001, 40, 145–151.

    Article  CAS  PubMed  Google Scholar 

  38. J. P. Tomé, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, M. Soncin, M. Magaraggia, S. Ferro, and G. Jori, Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates, J. Med. Chem., 2004, 47, 6649–6652.

    Article  PubMed  CAS  Google Scholar 

  39. A. P. J. Maestrin, A. O. Ribeiro, A. C. Tedesco, C. R. Neri, F. S. Vinhado, O. A. Serra, P. R. Martins, Y. Iamamoto, A. M. G. Silva, A. C. Tomé, A novel chlorin derivative of meso-tris(pentafluorophenyl)-4-pyridylporphyrin: Synthesis, photophysics and photochemical properties., J. Braz. Chem. Soc., 2004, 15, 923–930.

    Article  CAS  Google Scholar 

  40. J. Sambroook, E. F. Fritsch, and T. Maniatis, Bacteriophage λ vectors, In Molecular Cloning. A Laboratory Manual, (Eds.) J. Sambroook, E. F. Fritsch, T. Maniatis, Second Edition, Cold Spring Harbor Laboratory Press, New York, 1989.

    Google Scholar 

  41. M. H. Adams, Bacteriophages, Interscience, New York, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria A. F. Faustino or Adelaide Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L., Carvalho, C.M.B., Faustino, M.A.F. et al. Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochem Photobiol Sci 9, 1126–1133 (2010). https://doi.org/10.1039/c0pp00051e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00051e

Navigation