Skip to main content
Log in

Targeted photodynamic therapy — a promising strategy of tumor treatment

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Targeted therapy is a new promising therapeutic strategy, created to overcome growing problems of contemporary medicine, such as drug toxicity and drug resistance. An emerging modality of this approach is targeted photodynamic therapy (TPDT) with the main aim of improving delivery of photosensitizer to cancer tissue and at the same time enhancing specificity and efficiency of PDT. Depending on the mechanism of targeting, we can divide the strategies of TPDT into “passive”, “active” and “activatable”, where in the latter case the photosensitizer is activated only in the target tissue. In this review, contemporary strategies of TPDT are described, including new innovative concepts, such as targeting assisted by peptides and aptamers, multifunctional nanoplatforms with navigation by magnetic field or “photodynamic molecular beacons” activatable by enzymes and nucleic acid. The imperative of introducing a new paradigm of PDT, focused on the concepts of heterogeneity and dynamic state of tumor, is also called for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

BHQ3:

Black Hole Quencher 3

Ce6:

Chlorin e6

DMF:

Dimethyl formamide

DPPC:

Dipalmitoyl phosphatidylcholine

DPPG:

Dipalmitoyl phosphatidylglycerol

EGFR:

Receptor of endothelial growth factor

EPR:

Enhanced permeability and retention

FR:

Folate receptor

FRET:

Forster resonance energy transfer

fVII:

Conjugating factor VII

GnRH:

Gonadotropin-releasing hormone

HPMA:

N-2-Hydroxypropyl methacrylamide

HPPH:

2-Devinyl-2-(1-hexyloxyethyl)pyropheophorbide

HUVEC:

Human umbilical vein endothelial cells

LLC:

Lewis lung cancer

m-Ce6:

meso-Chlorin e6 monoethylene diamine

MMP-7:

Matrix metalloproteinase 7

m-THPC:

5,10,15,20-Tetrakis(meso-hydroxyphenyl)chlorin

m-THPP:

5,10,15,20-Tetrakis(meso-hydroxyphenyl)porphyrin

NLS:

Nuclear localization signal

PAMAM:

Poly(amidoamine)

Pc4:

Silicon phthalocyanine 4

PCL:

Polycaprolactone

PDT:

Photodynamic therapy

PE:

Phosphatidylethanolamine

PEG:

Poly(ethylene glycol)

PLA:

Polylactide

PLGA:

Poly(d,l-lactide-co-glycolide)

PMB:

Photodynamic molecular beacons

PPI:

Polypropylene imine

RES:

Reticuloendothelial system

SCC:

Squamous cell carcinoma

siRNA:

Small interfering RNA

SLN:

Solid lipid nanoparticles

SnCe6(ED):

Tin(iv) chlorin e6 monoetylene diamine

SWNT:

Single-walled carbon nanotubes

TF:

Tissue factor

TMPyP4:

meso-5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine

TPC:

5-(4-Carboxyphenyl)-10,15,20-triphenyl chlorin

TPDT:

Targeted photodynamic therapy

VEC:

Vascular endothelial cells

VEGF:

Vascular endothelial growth factor

VP:

Verteporfin

References

  1. N. Solban, I. Rizvi and T. Hasan, Targeted photodynamic therapy, Lasers Surg. Med., 2006, 38, 522–531.

    Article  PubMed  Google Scholar 

  2. S. Verma, G. M. Watt, Z. Mai and T. Hasan, Strategies for enhanced photodynamic therapy effects, Photochem. Photobiol., 2007, 83, 996–1005.

    Article  CAS  PubMed  Google Scholar 

  3. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in photodynamic therapy: an emerging paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  4. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev., 2010, 110, 2839–2857.

    Article  CAS  PubMed  Google Scholar 

  5. R. Misra, S. Acharya and S. K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy, Drug Discovery Today, 2010, 15, 842–850.

    Article  CAS  PubMed  Google Scholar 

  6. O. Trédan, C. M. Galmarini, K. Patel and I. F. Tannock, Drug resistance and the solid tumor microenvironment, J. Natl. Cancer Inst., 2007, 99, 1441–1454.

    Article  PubMed  CAS  Google Scholar 

  7. G. Baronzio, A. Baronzio, E. Crespi and I. Freitas, Effects of tumor microenvironment on hyperthermia, photodynamic and nanotherapy, in Cancer Microenvironment and Therapeutic Implications, ed. G. Baronzio, G. Fiorentini and C. R. Cogle, Springer, Berlin, 2009, Chap. 10, pp. 181–201.

    Chapter  Google Scholar 

  8. G. Lövestam, H. Rauscher, G. Roebben, B. S. Klüttgen, N. Gibson, J-P. Putaud and H. Stamm, Considerations on a definition of nano-material for regulatory purposes, JRC Reference Report, Luxembourg 2010 (EUR 24403 EN), p. 13.

    Google Scholar 

  9. V. Wagner, B. Hüssig, S. Gaisser, and A-K. Bock, Nanomedicine: Drivers for development and possible impacts, JRC Scientific and Technical Reports, Luxembourg 2008 (EUR 23494 EN) p. 16.

    Google Scholar 

  10. S-D. Li and L. Huang, Pharmacokinetics and biodistribution of nanoparticles, Mol. Pharmaceutics, 2008, 5, 496–504.

    Article  CAS  Google Scholar 

  11. A. H. Faraji and P. Wipf, Nanoparticles in cellular drug delivery, Bioorg. Med. Chem., 2009, 17, 2950–2962.

    Article  CAS  PubMed  Google Scholar 

  12. D. S. Kohane, Microparticles and nanoparticles for drug delivery, Biotechnol. Bioeng., 2007, 96, 203–209.

    Article  CAS  PubMed  Google Scholar 

  13. F. Danhier, O. Feron and V. Préat, To exploit the tumor microen-vironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Controlled Release, 2010, 148, 135–146.

    Article  CAS  Google Scholar 

  14. F. Danhier, B. Ucakar, N. Magotteaux, M. E. Brewster and V. Préat, Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor, Int. J. Pharm., 2010, 392, 20–28.

    Article  CAS  PubMed  Google Scholar 

  15. D. Bechet, P. Couleaud, C. Frochot, M-L. Viriot, F. Guillemin and M. Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol., 2008, 26, 612–621.

    Article  CAS  PubMed  Google Scholar 

  16. Y. N. Konan, R. Gurny and E. Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66, 89–106.

    Article  CAS  Google Scholar 

  17. W-T. Li, Nanotechnology-based strategies to enhance the efficacy of photodynamic therapy for cancers, Curr. Drug Metab., 2009, 10, 851–860.

    Article  CAS  PubMed  Google Scholar 

  18. H-P. Lassalle, D. Dumas, S. Gräfe, M-A. D’Hallewin, F. Guillemin and L. Bezdetnaya, Correlation between in vivo pharmacokinetics, intratumoral distribution and photodynamic efficiency of liposomal mTHPC, J. Controlled Release, 2009, 134, 118–124.

    Article  CAS  Google Scholar 

  19. H. J. Jones, D. I. Vernon and S. BB, Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics, Br. J. Cancer, 2003, 89, 398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Q. Peng, J. Moan, L. W. Ma and J. M. Nesland, Uptake, localization, and photodynamic effect of meso-tetra(hydroxyphenyl)porphine and its corresponding chlorin in normal and tumor tissues of mice bearing mammary carcinoma, Cancer Res., 1995, 55, 2620–2626.

    CAS  PubMed  Google Scholar 

  21. B. Pégaz, E. Debefve, J. P. Ballini and G. Wagnières et al., Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantoic membrane model, Eur. J. Pharm. Sci., 2006, 28, 134–140.

    Article  PubMed  CAS  Google Scholar 

  22. A. S. L. Derycke and P. A. M. de Witte, Liposomes for photodynamic therapy, Adv. Drug Delivery Rev., 2004, 56, 17–30.

    Article  CAS  Google Scholar 

  23. K. Kataoka, A. Harada and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Delivery Rev., 2001, 47, 113–131.

    Article  CAS  Google Scholar 

  24. C. F. van Nostrum, Polymeric micelles to deliver photosensitizers for photodynamic therapy, Adv. Drug Delivery Rev., 2004, 56, 9–16.

    Article  CAS  Google Scholar 

  25. F. Marcucci and F. Lefoulon, Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress, Drug Discovery Today, 2004, 9, 219–228.

    Article  CAS  PubMed  Google Scholar 

  26. E. M. Cohen, H. Ding, C. W. Kessinger, C. Khemtong, J. Gao and B. D. Sumer, Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells, Otolaryngol.-Head. Neck Surg., 2010, 143, 109–115.

    Article  PubMed  Google Scholar 

  27. A. M. Master, M. E. Rodriguez, M. E. Kenney, N. L. Oleinick and A. S. Gupta, Delivery of the photosensitizer Pc 4 in PEG-PCL micelles for in vitro PDT studies, J. Pharm. Sci., 2010, 99, 2386–2398.

    Article  CAS  PubMed  Google Scholar 

  28. X. Wang, Y. Wang, Z. G. Chen and D. M. Shin, Advances of cancer therapy by nanotechnology, Cancer Res. Treat., 2009, 41, 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. R. Tong and J. J. Cheng, Anticancer polymeric nanomedicines, Polym. Rev., 2007, 47, 345–81.

    Article  CAS  Google Scholar 

  30. M. N. V. Ravi Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 2004, 104, 6017–6084.

    Article  PubMed  Google Scholar 

  31. S. J. Lee, K. Park and Y-K. Oh et al., Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice, Biomaterials, 2009, 30, 2929–2939.

    Article  CAS  PubMed  Google Scholar 

  32. F-Q. Hu, X-H. Jiang, X. Huang, X-L. Wu, H. Yuan, X-H. Wei and Y-Z. Du, Enhanced cellular uptake of chlorine e6 mediated by stearic acid-grafted chitosan oligosaccharide micelles, J. Drug Targeting, 2009, 17, 384–391.

    Article  CAS  Google Scholar 

  33. A. D. Augst, H. J. Kong and D. J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci., 2006, 6, 623–633.

    Article  CAS  PubMed  Google Scholar 

  34. A. Khdair, B. Gerard, H. Handa, G. Mao, M. P. V. Shekhar and J. Panyam, Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy, Mol. Pharmaceutics, 2008, 5, 795–807.

    Article  CAS  Google Scholar 

  35. S. A. Wissing, O. Kayser and R. H. Müller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Delivery Rev., 2004, 56, 1257–1272.

    Article  CAS  Google Scholar 

  36. S. Küchler, M. R. Radowski, T. Blaschke, M. Dathe, J. Plendl, R. Haag, M. Schäfer-Korting and K. D. Kramer, Nanoparticles for skin penetration enhancement - a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles, Eur. J. Pharm. Biopharm., 2009, 71, 243–25.

    Article  PubMed  CAS  Google Scholar 

  37. S. H. Medina and M. E. H. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem. Rev., 2009, 109, 3141–3157.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Cheng, Z. Xu, M. Ma and T. Xu, Dendrimers as drug carriers: applications in different routes of drug administration, J. Pharm. Sci., 2008, 97, 123–143.

    Article  CAS  PubMed  Google Scholar 

  39. R. K. Tekade, P. V. Kumar and N. K. Jain, Dendrimers in oncology: an expanding horizon, Chem. Rev., 2009, 109, 49–87.

    Article  CAS  PubMed  Google Scholar 

  40. S. Battah, S. Balaratnam, A. Casas, S. O’Neill, C. Edwards, A. Batlle, P. Dobbin and A. J. MacRobert, Macromolecular delivery of 5-aminolaevulinic acid-containing dendrimers for photodynamic therapy, Mol. Cancer Ther., 2007, 6, 876–885.

    Article  CAS  PubMed  Google Scholar 

  41. A. Casas, S. Battah, G. Di Venosa, P. Dobbin, L. Rodriguez, H. Fukuda, A. Batlle and A. J. MacRobert, Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy, J. Controlled Release, 2009, 135, 136–143.

    Article  CAS  Google Scholar 

  42. C. Kojima, Y. Toi, A. Harada and K. Kono, Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy, Bioconjugate Chem., 2007, 18, 663–670.

    Article  CAS  Google Scholar 

  43. N. Nishiyama, H. R. Stapert, G-D. Zhang, D. Takasu, D-L. Jiang, T. Nagano, T. Aida and K. Kataoka, Light-harvesting ionic dendrimers porphyrins as new photosensitizers for photodynamic therapy, Bioconjugate Chem., 2003, 14, 58–66.

    Article  CAS  Google Scholar 

  44. G-D. Zhang, A. Harada, N. Nishiyama, D-L. Jiang, H. Koyama, T. Aida and K. Kataoka, Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer, J. Controlled Release, 2003, 93, 141–150.

    Article  CAS  Google Scholar 

  45. N. Nishiyama, Y. Nakagishi and Y. Morimoto et al., Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine, J. Controlled Release, 2009, 133, 245–251.

    Article  CAS  Google Scholar 

  46. F. Yan and R. Kopelman, The embedding of metatetra(hydroxyphenyl-)chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties, Photochem. Photobiol., 2003, 78, 587–591.

    Article  CAS  PubMed  Google Scholar 

  47. H. Podbielska, A. Ulatowska-Jarza, G. Müller, I. Hołowacz, J. Bauer and U. Bindig, Silica sol-gel matrix doped with Photolon molecules for sensing and medical therapy purposes, Biomol. Eng., 2007, 24, 425–433.

    Article  CAS  PubMed  Google Scholar 

  48. L. M. Rossi, P. R. Silva, L. L. Vono, A. U. Fernandes, D. B. Tada and M. S. Baptista, Protoporphyrin IX nanoparticle carrier: preparation, optical properties and singlet oxygen generation, Langmuir, 2008, 24, 12534–12538.

    Article  CAS  PubMed  Google Scholar 

  49. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty and P. N. Prasad, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 2003, 125, 7860–7865.

    Article  CAS  PubMed  Google Scholar 

  50. X. He, X. Wu, K. Wang, B. Shi and L. Hai, Methylene blueencapsulated phosphonate-terminated silica nanoparticles for silmultaneous in vivo imaging and photodynamic therapy, Biomaterials, 2009, 30, 5601–5609.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei and C. Burda, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 2008, 130, 10643–10647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic and D. A. Russell, Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’, Photochem. Photobiol. Sci., 2006, 5, 727–734.

    Article  CAS  PubMed  Google Scholar 

  53. J. Kopeček, P. Kopečková, T. Minko and Z-R. Lu, HPMA copolymeranticancer drug conjugates: design, activity, and mechanism of action, Eur. J. Pharm. Biopharm., 2000, 50, 61–81.

    Article  PubMed  Google Scholar 

  54. S. Sadekar, A. Ray, M. Janàt-Amsbury, C. M. Peterson and H. Ghandehari, Comparative biodistribution of PAMAM dendrimers and HPMA copolymers in ovarian-tumor-bearing mice, Biomacromolecules, 2011, 12, 88–96.

    Article  CAS  PubMed  Google Scholar 

  55. M. Tijerina, P. Kopečková and J. Kopeček, Correlation of subcellular compartmentalization of hpma copolymer-mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells, Pharm. Res., 2003, 20, 728–737.

    Article  CAS  PubMed  Google Scholar 

  56. I. J. Majoros, C. R. Williams and J. R. Baker Jr., Current dendrimer applications in cancer diagnosis and therapy, Curr. Top. Med. Chem., 2008, 8, 1165–1179.

    Article  CAS  PubMed  Google Scholar 

  57. J. D. Byrne, T. Betancourt and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Delivery Rev., 2008, 60, 1615–1626.

    Article  CAS  Google Scholar 

  58. A. Béduneau, P. Saulnier and J-P. Benoit, Active targeting of brain tumors using nanocarriers, Biomaterials, 2007, 28, 4947–4967.

    Article  PubMed  CAS  Google Scholar 

  59. W. M. Sharman, J. E. van Lier and C. M. Allen, Targeted photodynamic therapy via receptor mediated delivery systems, Adv. Drug Delivery Rev., 2004, 56, 53–76.

    Article  CAS  Google Scholar 

  60. S. Kumar and C. Li, Targeting of vasculature in cancer and other angiogenic diseases, Trends Immunol., 2001, 22, 129.

  61. P. Carmeliet, Angiogenesis in health and diseases, Nat. Med., 2003, 9, 653–660.

    Article  CAS  PubMed  Google Scholar 

  62. L. Tirand, C. Frochot and R. Vanderesse et al., A peptide competing with VEGF165 binding on neurophilin-1 mediates taegeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells, J. Controlled Release, 2006, 111, 153–164.

    Article  CAS  Google Scholar 

  63. V. Chaleix, V. Sol, M. Guiloton, R. Granet and P. Krausz, Efficient synthesis of RGD-containing cyclic peptide-porphyrin conjugates by ring-closing metathesis on solid support, Tetrahedron Lett., 2004, 45, 5295–5299.

    Article  CAS  Google Scholar 

  64. Z. Hu, B. Rao, S. Chen and J. Duanmu, Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice, BMC Cancer, 2010, 10, 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. G. Zheng, H. Li, M. Zhang, S. Lund-Katz, B. Chance and J. D. Glickson, Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer, Bioconjugate Chem., 2002, 13, 392–396.

    Article  CAS  Google Scholar 

  66. H. J. Hopkinson, D. I. Vernon and S. B. Brown, Identification and partial characterization of an unusual distribution of the photosensitizer meta-tetrahydroxyphenyl chlorin (temoporfin) in human plasma, Photochem. Photobiol., 1999, 69, 482–488.

    Article  CAS  PubMed  Google Scholar 

  67. M. B. Vrouenraets, G. M. W. Visser and C. Loup et al., Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy, Int. J. Cancer, 2000, 88, 108–114.

    Article  CAS  PubMed  Google Scholar 

  68. M. Bhatti, G. Yahioglu, L. R. Milgrom, M. Garcia-Maya, K. A. Chester and M. P. Deonarain, Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments, Int. J. Cancer, 2007, 122, 1155–1163.

    Article  CAS  Google Scholar 

  69. J. J. Laskin and A. B. Sandler, Epidermal growth factor receptor: a promising target in solid tumours, Cancer Treat. Rev., 2004, 30, 1–17.

    Article  CAS  PubMed  Google Scholar 

  70. A. Levitzki and S. Klein, Signal transduction therapy of cancer, Mol. Aspects Med., 2010, 31, 287–329.

    Article  CAS  PubMed  Google Scholar 

  71. S. V. Lutsenko, N. B. Feldman and G. V. Finakova et al., Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates, Tumor Biol., 1999, 20, 218–224.

    Article  CAS  Google Scholar 

  72. A. Gijsens, L. Missiaen, W. Merlevede and P. de Witte, Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity, Cancer Res., 2000, 60, 2197–2202.

    CAS  PubMed  Google Scholar 

  73. A. Gijsens, A. Derycke, L. Missiaen, D. De Vos, J. Huwyler, A. Eberle and P. de Witte, Targeting of the photocytotoxic compound AlPcS4 to HeLa cells by transferrin conjugated PEG-liposomes, Int. J. Cancer, 2002, 101, 78–85.

    Article  CAS  PubMed  Google Scholar 

  74. S. Rahimipour, N. Ben-Aroya and K. Ziv et al., Receptor-mediated targeting of a photosensitizer by its conjugation to gonadotropinreleasing hormone analogues, J. Med. Chem., 2003, 46, 3965–3974.

    Article  CAS  PubMed  Google Scholar 

  75. N. L. Oleinick and H. H. Evans, The photobiology of photodynamic therapy: cellular targets and mechanisms, Radiat. Res., 1998, 150(Suppl.), S146–S156.

    Article  CAS  PubMed  Google Scholar 

  76. D. Kessel and Y. Luo, Photodynamic therapy: A mitochondrial inducer of apoptosis, Cell Death Differ., 1999, 6, 28–35.

    Article  CAS  PubMed  Google Scholar 

  77. J. Morgan and A. R. Oseroff, Mitochondria-based photodynamic anti-cancer therapy, Adv. Drug Delivery Rev., 2001, 49, 71–86.

    Article  CAS  Google Scholar 

  78. K. M. Wagstaff and D. A. Jans, Nuclear drug delivery to target tumour cells, Eur. J. Pharmacol., 2009, 625, 174–180.

    Article  CAS  PubMed  Google Scholar 

  79. A. A. Rosenkranz, D. A. Jans and A. R. Sobolev, Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency, Immunol. Cell Biol., 2000, 78, 452–464.

    Article  CAS  PubMed  Google Scholar 

  80. S. Mettath, B. R. Munson and R. K. Pandey, DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position, Bioconjugate Chem., 1999, 10, 94–102.

    Article  CAS  Google Scholar 

  81. S. Tada-Oikawa, S. Oikawa, J. Hirayama, K. Hirakawa and S. Kawanishi, DNA damage and apoptosis induced by photosensitization of 5,10,15,20-tetrakis (n-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygen generation, Photochem. Photobiol., 2009, 85, 1391–1399.

    Article  CAS  PubMed  Google Scholar 

  82. B. B. Noodt, J. Moan, E. Kvam and H. B. Steen, No correlation between DNA strand breaks and HPRT mutation induced by photochemical treatment in V79 cells, Mutat. Res. Lett., 1994, 323, 75–79.

    Article  CAS  Google Scholar 

  83. E. Kvam, K. Berg and H. B. Steen, Characterization of singlet oxygeninduced guanine residue damage after photochemical treatment of free nucleosides and DNA, Biochim. Biophys. Acta, Gene Struct. Expression, 1994, 1217, 9–15.

    Article  CAS  Google Scholar 

  84. J. A. Woods, N. J. Traynor, L. Brancaleon and H. Moseley, The effect of Photofrin on DNA strand breaks and base oxidation in HaCaT keratinocytes: a comet assay study, Photochem. Photobiol., 2004, 79, 105–113.

    Article  CAS  PubMed  Google Scholar 

  85. F. I. McNair, B. Marples, C. M. L. West and J. V. Moore, A comet assay of DNA damage and repair in K562 cells after photodynamic therapy using haematoporphyrin derivative, methylene blue and mesotetrahydroxyphenylchlorin, Br. J. Cancer, 1997, 75, 1721–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. A. K. Haylett, T. H. Ward and J. V. Moore, DNA damage and repair in gorlin syndrome and normal fibroblasts after aminolevulinic acid photodynamic therapy: a comet assay study, Photochem. Photobiol., 2003, 78, 337–341.

    Article  CAS  PubMed  Google Scholar 

  87. H. H. Evans, M-F. Hornig, M. Ricanati, J. Thorn Deahl and N. L. Oleinick, Mutagenicity of photodynamic therapy as compared to UVC and ionizing radiation in human and murine lymphoblast cell lines, Photochem. Photobiol., 1997, 66, 690–696.

    Article  CAS  PubMed  Google Scholar 

  88. J. Moan, On the diffusion length of singlet oxygen in cells and tissues, J. Photochem. Photobiol., B, 1990, 6, 343–344.

    Article  CAS  Google Scholar 

  89. A. S. Sobolev, D. A. Jans and A. A. Rosenkranz, Targeted intracellular delivery of photosensitizers, Prog. Biophys. Mol. Biol., 2000, 73, 51–90.

    Article  CAS  PubMed  Google Scholar 

  90. R. Schneider, L. Tirand, C. Frochot, R. Vanderesse, N. Thomas, J. Gravier, F. Guillemin and M. Barberi-Heyob, Recent improvements in the use of synthetic peptides for a selective photodynamic therapy, Anti-Cancer Agents Med. Chem., 2006, 6, 469–488.

    Article  CAS  Google Scholar 

  91. K. Sheldon, D. Liut, J. Ferguson and J. Garijepy, Loligomers: Design of de novo peptide-based intracellular vehicles, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2056–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. S. K. Bisland, D. Singh and J. Gariépy, Potentiation of chlorin e6 photodynamic activity in vitro with peptide-based intracellular vehicles, Bioconjugate Chem., 1999, 10, 982–992.

    Article  CAS  Google Scholar 

  93. T. V. Akhlynina, D. A. Jans and A. A. Rosenkranz et al., Nuclear targeting of chlorin e6enhances its photosensitizing activity, J. Biol. Chem., 1997, 272, 20328–20331.

    Article  CAS  PubMed  Google Scholar 

  94. E. Dausse, S. Da Rocha Gomes and J-J. Toulmé, Aptamers: a new class of oligonucleotides in the drug discovery pipeline?, Curr. Opin. Pharmacol., 2009, 9, 602–607.

    Article  CAS  PubMed  Google Scholar 

  95. T. Hermann and D. J. Patel, Adaptive recognition by nucleic acid aptamers, Science, 2000, 287, 820–825.

    Article  CAS  PubMed  Google Scholar 

  96. P. Ray and R. R. White, Aptamers for targeted drug delivery, Pharmaceuticals, 2010, 3, 1761–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Y-A. Shieh, S-J. Yang, M-F. Wei and M-J. Shieh, Aptamer-based tumor-targeted drug delivery for photodynamic therapy, ACS Nano, 2010, 4, 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  98. C. S. M. Ferreira, M. C. Cheung, S. Missalidis, S. Bisland and J. Gariépy, Phototoxic aptamers selectively enter and kill epithelial cancer cells, Nucleic Acids Res., 2008, 37, 866–876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J-F. Müller and M. Barberi-Heyob, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 2005, 13, 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  100. P. J. Stevens, M. Sekido and R. J. Lee, Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation, Anticancer Res., 2004, 24, 161–166.

    CAS  PubMed  Google Scholar 

  101. M. Verhille, P. Couleaud, R. Vanderesse, D. Brault, M. Barberi-Heyob and C. Frochot, Modulation of photosensitization processes for an improved targeted photodynamic therapy, Curr. Med. Chem., 2010, 17, 3925–3943.

    Article  CAS  PubMed  Google Scholar 

  102. T. W. B. Liu, J. Chen and G. Zheng, Peptide-based molecular beacons for cancer imaging and therapy, Amino Acids, 2010, DOI: 10.1007/s00726-010-0499-1.

    Google Scholar 

  103. M-J. Shieh, C-L. Peng, W-L. Chiang, C-H. Wang, C-Y. Hsu, S-J. J. Wang and P-S. Lai, Reduced skin photosenstivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(D,L-lactide) diblock copolymer in vivo, Mol. Pharmaceutics, 2010, 7, 1244–1253.

    Article  CAS  Google Scholar 

  104. C. J. F. Rijcken, J-W. Hofman, F. van Zeeland, W. E. Hennink and C. F. van Nostrum, Photosensitizer-loaded biodegradable polymeric micelles: preparation, characterisation and in vitro PDT efficacy, J. Controlled Release, 2007, 124, 144–153.

    Article  CAS  Google Scholar 

  105. S. O. McDonnell, M. J. Hall, L. T. Allen, A. Byrne, W. M. Gallagher and D. F. O’Shea, Supramolecular photonic therapeutic agents, J. Am. Chem. Soc., 2005, 127, 16360–16361.

    Article  CAS  PubMed  Google Scholar 

  106. T. Yogo, Y. Urano and A. Mizushima et al., Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. S. Ozlem and E. U. Akkaya, Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy, J. Am. Chem. Soc., 2009, 131, 48.

  108. G. Zheng, J. Chen, K. Stefflova, M. Jarvi, H. Li and B. C. Wilson, Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 8989–8994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. P-C. Lo, J. Chen and K. Stefflova et al., Photodynamic molecular triggered by fibroblast activation protein on cancer associated fibroblasts for diagnosis and treatment of epithelial cancer, J. Med. Chem., 2009, 52, 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. J. Chen, J. F. Lovell, P. Lo, K. Stefflova, M. Niedre, B. C. Wilson and G. Zheng, A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production, Photochem. Photobiol. Sci., 2008, 7, 775–781.

    Article  CAS  PubMed  Google Scholar 

  111. E. Clo, J. W. Snyder, N. V. Voigt, P. R. Ogilby and K. V. Gothelf, DNA-programmed control of photosensitized singlet oxygen production, J. Am. Chem. Soc., 2006, 128, 4200–4201.

    Article  CAS  PubMed  Google Scholar 

  112. Z. Zhu, Z. Tang, J. A. Philips, R. Yang, H. Wang and W. Tan, Regulation of singlet oxygen generation using single-walled carbon nanotubes, J. Am. Chem. Soc., 2008, 130, 10856–10857.

    Article  CAS  PubMed  Google Scholar 

  113. J. Chen, K. Stefflova, M. Warren, J. Bu, B. C. Wilson and G. Zheng, Rational design of a receptor-targeted photodynamic molecular beacon for the multilevel control of singlet oxygen production and PDT activity in cancer cells, Proc. SPIE Int. Soc. Opt. Eng., 2007, 6449, 1–9.

    Google Scholar 

  114. M. Akbulut, S. M. D’Addio, M. E. Gindy and R. K. Prud’homme, Novel methods of targeted drug delivery: the potential of multifunctional nanoparticles, Expert Rev. Clin. Pharmacol., 2009, 2, 265–282.

    Article  CAS  PubMed  Google Scholar 

  115. G. R. Reddy, M. S. Bhojani and P. McConville et al., Vascular targeted nanoparticles for imaging and treatment of brain tumors, Clin. Cancer Res., 2006, 12, 6677–6686.

    Article  CAS  PubMed  Google Scholar 

  116. L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey and P. N. Prasad, Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy, Mol. Pharmaceutics, 2006, 3, 415–423.

    Article  CAS  Google Scholar 

  117. S. Balivada, R. S. Rachakatla and H. Wang et al., A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study, BMC Cancer, 2010, 10, 119–128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. W. Chen and J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapy for cancer treatment, J. Nanosci. Nanotechnol., 2006, 6, 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  119. M. Zhang, T. Murakami, K. Ajima, K. Tsuchida, A. S. D. Sandanayaka, O. Ito, S. Iijima and M. Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 14773–14778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. K. Stefflova, J. Chen, D. Marotta, H. Li and G. Zheng, Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ, J. Med. Chem., 2006, 49, 3850–3856.

    Article  CAS  PubMed  Google Scholar 

  121. C. R. Rovaldi, A. Pievsky, N. A. Sole, P. M. Friden, D. M. Rothstein and P. Spacciapoli, Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens in vitro, Antimicrob. Agents Chemother., 2000, 44, 3364–3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej M. Bugaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaj, A.M. Targeted photodynamic therapy — a promising strategy of tumor treatment. Photochem Photobiol Sci 10, 1097–1109 (2011). https://doi.org/10.1039/c0pp00147c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00147c

Navigation