Issue 8, 2011

Highly water repellent aerogels based on cellulose stearoyl esters

Abstract

Herein we combine in a novel way the physical effect of porous structure of a cellulosic aerogel with the chemical effect of long alkyl tails by a well known homogeneous green esterification method, to achieve purely bio-based and highly water repellent cellulosic materials. As an alternative for a traditional fluoro derivatized hydrophobization, here long fatty acid tails are utilized to lower the surface energy. To minimize the process emission, ionic liquid (IL) 1-allyl-3-methylimidazolium chloride is used for the esterification, due to its non-volatility and recyclability. We have shown here that low degree of substitution (DS) of the fatty acid cellulose material enables the spontaneous formation of aerogels. Additionally, the very low content of the long stearoyl tails combined with the porous aerogel structure resulted in significant increase in hydrophobicity from an aqueous contact angle of 0° up to 124°. We foresee that this approach can allow sustainable and completely bio-based coatings and insulators paving the way for a new green application potential for cellulose based materials.

Graphical abstract: Highly water repellent aerogels based on cellulose stearoyl esters

Article information

Article type
Paper
Submitted
15 Sep 2010
Accepted
04 Apr 2011
First published
03 May 2011

Polym. Chem., 2011,2, 1789-1796

Highly water repellent aerogels based on cellulose stearoyl esters

M. Granström, M. K. née Pääkkö, H. Jin, E. Kolehmainen, I. Kilpeläinen and O. Ikkala, Polym. Chem., 2011, 2, 1789 DOI: 10.1039/C0PY00309C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements