Issue 43, 2011

Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations

Abstract

Simultaneous actuation and sensing properties of a triple layer actuator interchanging cations are presented for the first time. Thick polypyrrole (pPy)/dodecylbenzenesulfonate (DBS) films (36 μm) were electrogenerated on stainless steel electrodes. Sensing characteristics of pPy-DBS/tape/pPy-DBS triple layer artificial muscle were studied as a function of electrolyte concentration, temperature and driving current using lithium perchlorate (LiClO4) aqueous solution as electrolyte. The chronopotentiometric responses were studied by applying consecutive square waves of currents to produce angular movements of ±45° by the free end of the triple layer. The evolution of the muscle potential (anode film versus cathode film) during current flow is a function of the studied chemical and physical variables. The electrical energy consumed to describe a constant angle is a linear function of the working temperature or of the driving electrical current, and a double logarithmic function of the electrolyte concentration. Those are the sensing functions. The cation exchanging bending triple layer actuator senses the working conditions. Similar sensing functions were described in the literature for devices interchanging anions. Irrespective of the reaction mechanism, a single electrochemo–mechanical device comprised of two reactive polymer electrodes (oxidation film and reduction film) works simultaneously as both sensor and actuator (self-sensing actuators). These are the general sensing properties of dense and biomimetic reactive gels of conducting polymers. Thus, any reactive device based on the same type of materials and reactions (batteries, smart windows, actuators, electron–ion transducers) is expected to sense surrounding conditions, as biological organs do.

Graphical abstract: Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2011
Accepted
25 Aug 2011
First published
06 Oct 2011

J. Mater. Chem., 2011,21, 17265-17272

Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations

F. García-Córdova, L. Valero, Y. A. Ismail and T. F. Otero, J. Mater. Chem., 2011, 21, 17265 DOI: 10.1039/C1JM13374H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements