Issue 18, 2012

Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes

Abstract

Interconnected porous MnO nanoflakes on nickel foam were prepared by a reduction of hydrothermal synthesized MnO2 precursor in hydrogen. The architectures were applied to lithium ion batteries as electrodes. Compared with the as-synthesized MnO2 anode, porous MnO nanoflakes showed superior cycling stability and rate performance. A high reversible capacity of 568.7 mA h g−1 was obtained at a current density of 246 mA g−1 for the second discharge. It retained a capacity of 708.4 mA h g−1 at the 200th charge–discharge cycle after cycling with various current densities up to 2460 mA g−1 and delivered a capacity of 376.4 mA h g−1 at a current density as high as 2460 mA g−1, indicating that the architecture of the porous MnO nanoflakes grown on Ni foam is a promising electrode for lithium ion batteries.

Graphical abstract: Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes

Article information

Article type
Paper
Submitted
31 Jan 2012
Accepted
08 Mar 2012
First published
13 Mar 2012

J. Mater. Chem., 2012,22, 9189-9194

Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes

X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang and D. He, J. Mater. Chem., 2012, 22, 9189 DOI: 10.1039/C2JM30604B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements