Skip to main content

Advertisement

Log in

Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This paper presents energy transfer occurring in small organically modified core-shell nanoparticles (core lanthanide oxide, shell polysiloxane) (diameter < 10 nm) conjugated with photosensitizers designed for photodynamic therapy applications. These nanoparticles covalently encapsulate a photosensitizing PDT drug in different concentrations. Stable dispersions of the nanoparticles were prepared and the photophysical properties of the photosensitizers were studied and compared to those of the photosensitizers in solution. Increasing the photosensitizer concentration in the nanoparticles was not found to cause any changes in the absorption properties while fluorescence and singlet oxygen quantum yields decreased. As a possible explanation, we have suggested that both long distance energy transfer such as FRET and self-quenching could occur into the nanoparticles. A simple “trend” model of this kind of energy transfer complies with results of experiments on steady state fluorescence and singlet oxygen luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APTES:

Aminopropyltriethoxysilane

Ce6:

Chlorin e6

DEG:

Diethyleneglycol

DMSO:

Dimethylsulfoxide

FRET:

Förster resonance energy transfer

Φ F :

Fluorescence quantum yield

Φ Δ :

Singlet oxygen quantum yield

MRI:

Magnetic resonance imaging

NHS:

N-Hydroxy succinimic ester

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PS:

Photosensitizer

Q:

Quencher

ROS:

Reactive oxygen species

TEA:

Triethylamine

TEOS:

Tetraethoxysilane

TPC:

5-(4-Carboxyphenyl)-10,15,20-triphenylchlorin

References

  1. R. K. Pandey and G. Zhang, Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith, R. Guilard, Academic Press, San Diego, CA, 2000.

  2. I. J. MacDonald, T. J. Dougherty, Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5, 105–129.

    Article  CAS  Google Scholar 

  3. K. R. Weishaupt, C. J. Gomer, T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photo inactivation of a murine tumor, Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  4. J. B. Mitchell, S. McPherson, W. DeGraff, Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells, Cancer Res., 1985, 45, 2008–2011.

    CAS  PubMed  Google Scholar 

  5. D. Bechet, P. Couleaud, C. Frochot, M. L. Viriot, F. Guillemin, M. Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol., 2008, 26, 612–621.

    Article  CAS  Google Scholar 

  6. D. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amro, B. Loock, P. Couleaud, C. Frochot, A. Morère, P. Maillard, M. Garcia, J. O. Durand, Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy, Chem. Commun., 2009, 1475–1477.

    Google Scholar 

  7. J. L. Bridot, A. C. Faure, S. Laurent, C. Rivière, C. Billotey, B. Hiba, M. Janier, V. Josserand, J. L. Coll, L. Vander Elst, R. Muller, S. Roux, P. Perriat, O. Tillement, Hybrid gadolinium oxide nanoparticles Multimodal contrast agents for in vivo imaging, J. Am. Chem. Soc., 2007, 129, 5076–5084.

    Article  CAS  Google Scholar 

  8. A. C. Faure, S. Dufort, V. Josserand, P. Perriat, J. L. Coll, S. Roux, O. Tillement, Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coating, Small, 2009, 5, 2565–2575.

    Article  CAS  Google Scholar 

  9. A. C. Faure, C. Hoffmann, R. Bazzi, F. Goubard, E. Pauthe, C. A. Marquette, L. J. Blum, S. Roux, O. Tillement, Functionalization of luminescent aminated particles for facile bioconjugation, ACS Nano, 2008, 2, 2273–2282.

    Article  CAS  Google Scholar 

  10. P. Couleaud, D. Bechet, R. Vanderesse, M. Barberi-Heyob, A. C. Faure, S. Roux, O. Tillement, S. Porhel, F. Guillemin, C. Frochot, Functionalized silica-based nanoparticles for photodynamic therapy, Nanomedicine, 2011, 6, 995–1009.

    Article  CAS  Google Scholar 

  11. R. Bonnett, Chemical Aspect of Photodynamic Therapy, Gordon and Breach Science Publisher 2000.

    Book  Google Scholar 

  12. T. L. C. Figueiredo, R. A. W. Johnstone, A. M. P. SantAna Sørensen, D. Burget, P. Jacques, Determination of fluorescence yields, singlet lifetimes and singlet oxygen yields of water-insoluble porphyrins and metalloporphyrins in organic solvents and in aqueous media, Photochem. Photobiol., 1999, 69, 517–528.

    Article  CAS  Google Scholar 

  13. M. C. Derosa, R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371.

    Article  CAS  Google Scholar 

  14. L. Tirand, C. Frochot, R. Vanderesse, N. Thomas, E. Trinquet, S. Pinel, M. L. Viriot, F. Guillemin, M. Barberi-Heyob, A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells, J. Controlled Release, 2006, 111, 153–164.

    Article  CAS  Google Scholar 

  15. W. Dong, J. C. André, Diffusion-controlled reactions. II. An approach based on generalized diffusion equation, J. Chem. Phys., 1994, 101, 299–306.

    Article  CAS  Google Scholar 

  16. J. Perrin, Mouvement brownien et réalité moléculaire, Ann. Chim. Phys., 1909, 19, 5–104.

    Google Scholar 

  17. L. E. Bennett, K. P. Ghiggino, R. W. Henderson, Singlet oxygen formation in monomeric and aggregated porphyrin c, J. Photochem. Photobiol., B, 1989, 3, 81–89.

    Article  CAS  Google Scholar 

  18. X. Damoiseau, H. J. Schuitmaker, J. W. M. Lagerberg, M. Hoebeke, Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation, J. Photochem. Photobiol., B, 2001, 60, 50–60.

    Article  CAS  Google Scholar 

  19. M. R. Hamblin, J. L. Miller, I. Rizvi, B. Ortel, Degree of substitution of chlorin(e6) conjugated to charged poly-L-lysine chains affects their cellular uptake, localization and phototoxicity towards macrophages and cancer cells, J. XRay Sci. Tech., 2002, 10, 139–152.

    CAS  Google Scholar 

  20. J. R. McCarthy, J. M. Perez, C. Brückner, R. Weissleder, Polymeric nanoparticle preparation that erradicate tumors, Nano Lett., 2005, 5, 2552–2556.

    Article  CAS  Google Scholar 

  21. M. Verhille, P. Couleaud, R. Vanderesse, M. Barberi-Heyob, C. Frochot, Modulation of photosensitization processes for an improved targeted photodynamic therapy, Curr. Med. Chem., 2010, 17, 3925–43.

    Article  CAS  Google Scholar 

  22. Y. Choi, R. Weissleder, C. H. Tung, Selective antitumor effect of novel protease-mediated photodynamic agent, Cancer Res., 2006, 66, 7225–7229.

    Article  CAS  Google Scholar 

  23. M. A. Campo, D. Gabriel, P. Kucera, R. Gurny, N. Lange, Polymeric photosensitizer prodrugs for photodynamic therapy, Photochem. Photobiol., 2007, 83, 958–965.

    Article  CAS  Google Scholar 

  24. D. Gabriel, M. F. Zuluaga, M. N. Martinez, M. A. Campo, N. Lange, Urokinaseplasminogen sensitive polymeric photosensitizer prodrugs: Design, synthesis and in vitro evaluation, J. Drug Deliv. Sci. Tech., 2009, 19, 15–24.

    Article  CAS  Google Scholar 

  25. S. Barazzouk, H. Lee, S. Hotchandani, P. V. Kamat, Photosensitization aspects of Pinacyanol H-aggregates. Charge injection from singlet and Triplet states into SnO2 Nanocrystallites, J. Phys. Chem. B, 2000, 104, 3616–3623.

    Article  CAS  Google Scholar 

  26. L. M. Rossi, P. R. Silva, L. L. R. Vono, A. U. Fernandes, D. B. Tada, M. S. Baptista, Protoporphyrin IX nanoparticle carrier: preparation, optical properties and singlet oxygen generation, Langmuir, 2008, 24, 12534–12538.

    Article  CAS  Google Scholar 

  27. D. B. Tada, L. M. Rossi, C. A. P. Leite, R. Itri, M. S. Baptista, Nanoparticle Platform to modulate reaction mechanism of phenothiazine photosensitizers, J. Nanosci. Nanotechnol., 2010, 10, 1–9.

    Article  Google Scholar 

  28. F. Liu, X. Zhou, Z. Chen, P. Huang, X. Wang, Y. Zhou, Preparation of purpurin-18 loaded magnetic nanocarriers in cottonseed oil for photodynamic therapy, Mater. Lett., 2008, 62, 2844–2847.

    Article  CAS  Google Scholar 

  29. D. B. Tada, L. L. R. Vono, E. L. Duarte, R. Itri, P. K. Kiyohara, M. S. Baptista, L. M. Rossi, Methylene blue-containing silica-coated magnetic particles: A potential magnetic carrier for photodynamic therapy, Langmuir, 2007, 23, 8194–8199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Frochot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sève, A., Couleaud, P., Lux, F. et al. Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen luminescence quenching. Photochem Photobiol Sci 11, 803–811 (2012). https://doi.org/10.1039/c2pp05324a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05324a

Navigation