Skip to main content
Log in

β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The association of doxorubicin (DOX) and artemisinin (ART) to a β-CyD-epichlorohydrin crosslinked polymer (pβ-CyD), organized in nanoparticles of ca. 15 nm size, was investigated in neutral aqueous medium by circular dichroism (CD), UV-vis absorption and fluorescence. The stability constants and the absolute CD spectra of the drug complexes were determined by global analysis of multiwavelength data from spectroscopic titrations. The polymer pβ-CyD proved able to disrupt the DOX dimer when the latter is the predominant form of DOX in solution. The spectroscopic and photophysical properties of the complexes evidenced an alcohol-like environment for ART and an improved inherent emission ability for DOX in the nanoparticle frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. Davis, M. E. Brewster, Cyclodextrin-based pharmaceutics: past, present and future, Nat. Rev. Drug Discovery, 2004, 3, 1023–1035.

    Article  CAS  PubMed  Google Scholar 

  2. J. X. Zhang, P. X. Ma, Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications, Nano Today, 2010, 5, 337–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Chen, Y. Liu, Cyclodextrin-based bioactive supramolecular assemblies, Chem. Soc. Rev., 2010, 39, 495–505.

    Article  CAS  PubMed  Google Scholar 

  4. F. van de Manakker, T. Vermonden, C. F. van Nostrum, W. E. Hennink, Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications, Biomacromolecules, 2009, 10, 3157–3175.

    Article  PubMed  CAS  Google Scholar 

  5. E. Bilensoy, A. A. Hincal, Recent advances and future directions in amphiphilic cyclodextrin nanoparticles, Expert Opin. Drug Delivery, 2009, 6, 1161–1173.

    Article  CAS  Google Scholar 

  6. R. Haag, Supramolecular drug-delivery systems based on polymeric core-shell architectures, Angew. Chem., Int. Ed., 2004, 43, 278–282.

    Article  CAS  Google Scholar 

  7. M. E. Davis, Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin, Adv. Drug Delivery Rev., 2009, 61, 1189–1192.

    Article  CAS  Google Scholar 

  8. J. Cheng, K. T. Khin, M. E. Davis, Antitumor activity of beta-cyclodextrin polymer-Camptothecin conjugates, Mol. Pharmaceutics, 2004, 1, 183–193.

    Article  CAS  Google Scholar 

  9. H. Tanaka, K. Kominato, R. Yamamoto, T. Yoshioka, H. Nishida, H. Tone, R. Okamoto, Synthesis of doxorubicin-cyclodextrin conjugates, J. Antibiot., 1994, 47, 1025–1029.

    Article  CAS  Google Scholar 

  10. S. Daoud-Mahammed, P. Couvreur, K. Bouchemal, M. Cheron, G. Lebas, C. Amiel, R. Gref, Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen, Biomacromolecules, 2009, 10, 547–554.

    Article  CAS  PubMed  Google Scholar 

  11. S. Daoud-Mahammed, J. L. Grossiord, T. Bergua, C. Amiel, P. Couvreur, R. Gref, Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs, J. Biomed. Mater. Res., Part A, 2008, 86A, 736–748.

    Article  CAS  Google Scholar 

  12. S. Daoud-Mahammed, P. Couvreur, C. Amiel, M. Besnard, M. Appel, R. Gref, Original tamoxifen-loaded gels containing cyclodextrins: in situ self-assembling systems for cancer treatment, J. Drug Delivery Sci. Technol., 2004, 14, 51–55.

    Article  CAS  Google Scholar 

  13. S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel, R. Gref, Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug, J. Colloid Interface Sci., 2007, 307, 83–93.

    Article  CAS  PubMed  Google Scholar 

  14. S. Daoud-Mahammed, P. Couvreur, R. Gref, Novel self-assembling nanogels: stability and lyophilisation studies, Int. J. Pharm., 2007, 332, 185–191.

    Article  CAS  PubMed  Google Scholar 

  15. K. Bouchemal, P. Couvreur, S. Daoud-Mahammed, J. Poupaert, R. Gref, A comprehensive study on the inclusion mechanism of benzophenone into supramolecular nanoassemblies prepared using two water-soluble associative polymers, J. Therm. Anal. Calorim., 2009, 98, 57–64.

    Article  CAS  Google Scholar 

  16. S. Daoud-Mahammed, S. A. Agnihotri, K. Bouchemal, S. Kloeters, P. Couvreur, R. Gref, Efficient loading and controlled release of benzophenone-3 entrapped into self-assembling nanogels, Curr. Nanosci., 2010, 6, 654–665.

    Article  CAS  Google Scholar 

  17. E. Renard, A. Deratani, G. Volet, B. Sebille, Preparation and characterization of water soluble high molecular weight beta-cyclodextrin-epichlorohydrin polymers, Eur. Polym. J., 1997, 33, 49–57.

    Article  CAS  Google Scholar 

  18. R. Gref, C. Amiel, K. Molinard, S. Daoud-Mahammed, B. Sebille, B. Gillet, J. C. Beloeil, C. Ringard, V. Rosilio, J. Poupaert, P. Couvreur, New self-assembled nanogels based on host-guest interactions: characterization and drug loading, J. Controlled Release, 2006, 111, 316–324.

    Article  CAS  Google Scholar 

  19. D. Dal Ben, M. Palumbo, G. Zagotto, G. Capranico, S. Moro, DNA topoisomerase II structures and anthracycline activity: insights into ternary complex formation, Curr. Pharm. Des., 2007, 13, 2766–2780.

    Article  CAS  PubMed  Google Scholar 

  20. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, Pharmacol. Rev., 2004, 56, 185–229.

    Article  CAS  PubMed  Google Scholar 

  21. N. Kumar, M. Sharma, D. S. Rawat, Medicinal chemistry perspectives of trioxanes and tetraoxanes, Curr. Med. Chem., 2011, 18, 3889–3928.

    Article  CAS  PubMed  Google Scholar 

  22. J. Li, B. Zhou, Biological actions of artemisinin: insights from medicinal chemistry studies, Molecules, 2010, 15, 1378–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Chaturvedi, A. Goswami, P. P. Saikia, N. C. Barua, P. G. Rao, Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents, Chem. Soc. Rev., 2010, 39, 435–454.

    Article  CAS  PubMed  Google Scholar 

  24. T. Efferth, A. Benakis, M. R. Romero, M. Tomicic, R. Rauh, D. Steinbach, R. Hafer, T. Stamminger, F. Oesch, B. Kaina, M. Marschall, Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron, Free Radical Biol. Med., 2004, 37, 998–1009.

    Article  CAS  Google Scholar 

  25. B. Meunier, A. Robert, Heme as trigger and target for trioxane-containing antimalarial drugs, Acc. Chem. Res., 2010, 43, 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  26. P. Y. Grosse, F. Bressolle, F. Pinguet, Methyl-beta-cyclodextrin in HL-60 parental and multidrug-resistant cancer cell lines: effect on the cytotoxic activity and intracellular accumulation of doxorubicin, Cancer Chemother. Pharmacol., 1997, 40, 489–494.

    Article  CAS  PubMed  Google Scholar 

  27. P. Y. Grosse, F. Bressolle, F. Pinguet, Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice, Br. J. Cancer, 1998, 78, 1165–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Y. Grosse, F. Bressolle, F. Pinguet, In vitro modulation of doxorubicin and docetaxel antitumoral activity by methyl-beta-cyclodextrin, Eur. J. Cancer, 1998, 34, 168–174.

    Article  CAS  PubMed  Google Scholar 

  29. P. Y. Grosse, F. Bressolle, P. Vago, J. Simony-Lafontaine, M. Radal, F. Pinguet, Tumor cell membrane as a potential target for methyl-beta-cyclodextrin, Anticancer Res., 1998, 18, 379–384.

    CAS  PubMed  Google Scholar 

  30. A. Al-Omar, S. Abdou, L. De Robertis, A. Marsura, C. Finance, Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line, Bioorg. Med. Chem. Lett., 1999, 9, 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  31. V. Monnaert, D. Betbeder, L. Fenart, H. Bricout, A. M. Lenfant, C. Landry, R. Cecchelli, E. Monflier, S. Tilloy, Effects of gamma- and hydroxypropyl-gamma-cyclodextrins on the transport of doxorubicin across an in vitro model of blood-brain barrier, J. Pharmacol. Exp. Ther., 2004, 311, 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  32. S. Tilloy, V. Monnaert, L. Fenart, H. Bricout, R. Cecchelli, E. Monflier, Methylated beta-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood-brain barrier, Bioorg. Med. Chem. Lett., 2006, 16, 2154–2157.

    Article  CAS  PubMed  Google Scholar 

  33. K. Hattori, A. Kenmoku, T. Mizuguchi, D. Ikeda, M. Mizuno, T. Inazu, Saccharide-branched cyclodextrins as targeting drug carriers, J. Inclusion Phenom. Macrocyclic Chem., 2006, 56, 9–16.

    Article  CAS  Google Scholar 

  34. Y. Oda, N. Kobayashi, T. Yamanoi, K. Katsuraya, K. Takahashi, K. Hattori, beta-cyclodextrin conjugates with glucose moieties designed as drug carriers: their syntheses, evaluations using concanavalin A and doxorubicin, and structural analyses by NMR spectroscopy, Med. Chem., 2008, 4, 244–255.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Oda, H. Yanagisawa, M. Maruyama, K. Hattori, T. Yamanoi, Design, synthesis and evaluation of d-galactose-beta-cyclodextrin conjugates as drug-carrying molecules, Bioorg. Med. Chem., 2008, 16, 8830–8840.

    Article  CAS  PubMed  Google Scholar 

  36. G. J. L. Bernardes, R. Kikkeri, M. Maglinao, P. Laurino, M. Collot, S. Y. Hong, B. Lepenies, P. H. Seeberger, Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting, Org. Biomol. Chem., 2010, 8, 4987–4996.

    Article  CAS  PubMed  Google Scholar 

  37. L. Y. Qiu, R. J. Wang, C. Zheng, Y. Jin, L. Q. Jin, beta-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery, Nanomedicine, 2010, 5, 193–208.

    Article  CAS  PubMed  Google Scholar 

  38. H. Kim, S. Kim, C. Park, H. Lee, H. J. Park, C. Kim, Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers, Adv. Mater., 2010, 22, 4280–4283.

    Article  CAS  PubMed  Google Scholar 

  39. E. S. Gil, J. S. Li, H. N. Xiao, T. L. Lowe, Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier, Biomacromolecules, 2009, 10, 505–516.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Hagiwara, H. Arima, F. Hirayama, K. Uekama, Prolonged retention of doxorubicin in tumor cells by encapsulation of gamma-cyclodextrin complex in pegylated liposomes, J. Inclusion Phenom. Macrocyclic Chem., 2006, 56, 65–68.

    Article  CAS  Google Scholar 

  41. H. Arima, Y. Hagiwara, F. Hirayama, K. Uekama, Enhancement of antitumor effect of doxorubicin by its complexation with gamma-cyclodextrin in pegylated liposomes, J. Drug Targeting, 2006, 14, 225–232.

    Article  CAS  Google Scholar 

  42. M. Menozzi, L. Valentini, E. Vannini, F. Arcamone, Self-association of doxorubicin and related-compounds in aqueous-solution, J. Pharm. Sci., 1984, 73, 766–770.

    Article  CAS  PubMed  Google Scholar 

  43. M. M. L. Fiallo, H. Tayeb, A. Suarato, A. Garnier-Suillerot, Circular dichroism studies on anthracycline antitumor compounds. Relationship between the molecular structure and the spectroscopic data, J. Pharm. Sci., 1998, 87, 967–975.

    Article  CAS  PubMed  Google Scholar 

  44. P. Agrawal, S. K. Barthwal, R. Barthwal, Studies on self-aggregation of anthracycline drugs by restrained molecular dynamics approach using nuclear magnetic resonance spectroscopy supported by absorption, fluorescence, diffusion ordered spectroscopy and mass spectrometry, Eur. J. Med. Chem., 2009, 44, 1437–1451.

    Article  CAS  PubMed  Google Scholar 

  45. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin, J. Controlled Release, 2001, 74, 295–302.

    Article  CAS  Google Scholar 

  46. O. Bekers, J. H. Beijnen, M. Otagiri, A. Bult, W. J. M. Underberg, Inclusion complexation of doxorubicin and daunorubicin with cyclodextrins, J. Pharm. Biomed. Anal., 1990, 8, 671–674.

    Article  CAS  PubMed  Google Scholar 

  47. O. Bekers, J. H. Beijnen, B. J. Vis, A. Suenaga, M. Otagiri, A. Bult, W. J. M. Underberg, Effect of cyclodextrin complexation on the chemical-stability of doxorubicin and daunorubicin in aqueous-solutions, Int. J. Pharm., 1991, 72, 123–130.

    Article  CAS  Google Scholar 

  48. O. Bekers, J. J. Kettenesvandenbosch, S. P. Vanhelden, D. Seijkens, J. H. Beijnen, A. Bult, W. J. M. Underberg, Inclusion complex-formation of anthracycline antibiotics with cyclodextrins-a proton nuclear-magnetic-resonance and molecular modeling study, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 11, 185–193.

    Article  CAS  Google Scholar 

  49. N. Husain, T. T. Ndou, A. M. Delapena, I. M. Warner, Complexation of doxorubicin with beta-cyclodextrins and gamma-cyclodextrins, Appl. Spectrosc., 1992, 46, 652–658.

    Article  CAS  Google Scholar 

  50. R. Anand, S. Ottani, F. Manoli, I. Manet, S. Monti, A close-up on doxorubicin binding to g-cyclodextrin: an elucidating spectroscopic, photophysical and conformational study, RSC Adv., 2012, 2, 2346–2357.

    Article  CAS  Google Scholar 

  51. J. W. Wong, K. H. Yuen, Inclusion complexation of artemisinin with alpha-, beta-, and gamma-cyclodextrins, Drug Dev. Ind. Pharm., 2003, 29, 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  52. J. W. Wong, K. H. Yuen, Improved oral bioavailability of artemisinin through inclusion complexation with beta- and gamma-cyclodextrins, Int. J. Pharm., 2001, 227, 177–185.

    Article  CAS  PubMed  Google Scholar 

  53. M. Kakran, N. G. Sahoo, L. Li, Z. Judeh, Dissolution enhancement of artemisinin with beta-cyclodextrin, Chem. Pharm. Bull., 2011, 59, 646–652.

    Article  CAS  Google Scholar 

  54. A. C. Illapakurthy, Y. A. Sabnis, B. A. Avery, M. A. Avery, C. M. Wyandt, Interaction of artemisinin and its related compounds with hydroxypropyl-beta-cyclodextrin in solution state: Experimental and molecular-modeling studies, J. Pharm. Sci., 2003, 92, 649–655.

    Article  CAS  PubMed  Google Scholar 

  55. A. C. Illapakurthy, C. M. Wyandt, S. P. Stodghill, Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions, Eur. J. Pharm. Biopharm., 2005, 59, 325–332.

    Article  CAS  PubMed  Google Scholar 

  56. B. Isacchi, S. Arrigucci, G. la Marca, M. C. Bergonzi, M. G. Vannucchi, A. Novelli, A. R. Bilia, Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice, J. Liposome Res., 2011, 21, 237–244.

    Article  CAS  PubMed  Google Scholar 

  57. M. Kakran, N. G. Sahoo, L. Li, Z. Judeh, P. Panda, Artemisinin-polyvinylpyrrolidone composites prepared by evaporative precipitation of nanosuspension for dissolution enhancement, J. Biomater. Sci., Polym. Ed., 2011, 22, 363–378.

    Article  CAS  Google Scholar 

  58. N. G. Sahoo, M. Kakran, L. Li, Z. Judeh, Fabrication of composite microparticles of artemisinin for dissolution enhancement, Powder Technol., 2010, 203, 277–287.

    Article  CAS  Google Scholar 

  59. M. T. Ansari, M. Haneef, G. Murtaza, Solid dispersions of artemisinin in polyvinyl pyrrolidone and polyethylene glycol, Adv. Clin. Exp. Med., 2010, 19, 745–754.

    Google Scholar 

  60. M. Kakran, N. G. Sahoo, L. Li, Z. Judeh, Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension, J. Pharm. Pharmacol., 2010, 62, 413–421.

    Article  CAS  PubMed  Google Scholar 

  61. G. Marconi, S. Monti, F. Manoli, A. Degli Esposti, B. Mayer, A circular dichroism and structural study of the inclusion complex artemisinin-beta-cyclodextrin, Chem. Phys. Lett., 2004, 383, 566–571.

    Article  CAS  Google Scholar 

  62. G. Marconi, S. Monti, F. Manoli, A. Degli Esposti, A. Guerrini, Circular-dichroism studies on artemisinin and epiartemisinin and their beta-cyclodextrin complexes in solution, Helv. Chim. Acta, 2004, 87, 2368–2377.

    Article  CAS  Google Scholar 

  63. M. Othman, K. Bouchemal, P. Couvreur, D. Desmaele, E. Morvan, T. Pouget, R. Gref, A comprehensive study of the spontaneous formation of nanoassemblies in water by a “lock-and-key” interaction between two associative polymers, J. Colloid Interface Sci., 2011, 354, 517–527.

    Article  CAS  PubMed  Google Scholar 

  64. M. Othman, K. Bouchemal, P. Couvreur, R. Gref, Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives, Int. J. Pharm., 2009, 379, 218–225.

    Article  CAS  PubMed  Google Scholar 

  65. M. K. Jung, K. Lee, H. Kendrick, B. L. Robinson, S. L. Croft, Synthesis, stability, and antimalarial activity of new hydrolytically stable and water-soluble (+)-deoxoartelinic acid, J. Med. Chem., 2002, 45, 4940–4944.

    Article  CAS  PubMed  Google Scholar 

  66. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, CRC Taylor & Francis, Boca Raton, FL 33487-2742, 3rd edn, 2006, p. 574.

    Book  Google Scholar 

  67. L. Gallois, M. Fiallo, A. Garnier-Suillerot, Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicinol with large unilamellar vesicles-Circular dichroism study, Biochim. Biophys. Acta, Biomembr., 1998, 1370, 31–40.

    Article  CAS  Google Scholar 

  68. B. Samori, A. Rossi, I. D. Pellerano, G. Marconi, L. Valentini, B. Gioia, A. Vigevani, Interactions between drugs and nucleic-acids. 1. dichroic studies of doxorubicin, daunorubicin, and their basic chromophore, quinizarin, J. Chem. Soc., Perkin Trans. 2, 1987, 1419–1426.

    Google Scholar 

  69. V. Rizzo, C. Battistini, A. Vigevani, N. Sacchi, G. Razzano, F. Arcamone, A. Garbesi, F. Colonna, M. L. Capobianco, L. Tondelli, Association of anthracyclines and synthetic hexanucleotides. Structural factors influencing sequence specificity, J. Mol. Recognit., 1989, 2, 132–141.

    Article  CAS  PubMed  Google Scholar 

  70. A. Walter, H. Schutz, E. Stutter, Interaction of anthracycline antibiotics with bio-polymers. 7. Equilibrium binding-studies on the interaction of iremycin and DNA, Int. J. Biol. Macromol., 1983, 5, 351–355.

    Article  CAS  Google Scholar 

  71. S. H. Zhu, L. M. Yan, X. B. Ji, W. C. Lu, Conformational diversity of anthracycline anticancer antibiotics: a density functional theory calculation, THEOCHEM, 2010, 951, 60–68.

    Article  CAS  Google Scholar 

  72. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Monti.

Additional information

Electronic supplementary information (ESI) available: See DOI: 10.1039/c2pp25014d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Manoli, F., Manet, I. et al. β-Cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochem Photobiol Sci 11, 1285–1292 (2012). https://doi.org/10.1039/c2pp25014d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25014d

Navigation