Issue 24, 2014

Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst

Abstract

Well controlled nanosheets-based hierarchical microspheres (NSHMS) of pure covellite phase CuS were synthesized using a facile PVP assisted solvothermal process. The reaction conditions were optimized using various amounts of PVP to develop unique hierarchical structured hollow microspheres. CuS hollow structures have a bandgap of ~1.97 eV. These mesoporous structures exhibit excellent photocatalytic activity in degradation of organic dyes (Methylene Blue) under natural light in comparison to other structures of copper sulphide. These photocatalysts show extraordinary reusability with over 96.5% degradation of organic dye after 6th cycle. A “bottom-up” assembly was successfully developed to synthesize hollow microspheres with unique and well defined architectures at large scale, which offer a good opportunity to understand the fundamental significance of unusual and complex hierarchical structures for their potential applications.

Graphical abstract: Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst

Article information

Article type
Paper
Submitted
14 Jan 2014
Accepted
13 Mar 2014
First published
13 Mar 2014

CrystEngComm, 2014,16, 5290-5300

Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst

M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W. S. Khan, F. K. But, M. Tahir and N. Mahmood, CrystEngComm, 2014, 16, 5290 DOI: 10.1039/C4CE00090K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements