Issue 21, 2014

A strong and tough interpenetrating network hydrogel with ultrahigh compression resistance

Abstract

A novel interpenetrating network (IPN) hydrogel with ultrahigh compressive strength and fracture strain has been prepared using the copolymer of 2-acrylamide-2-methylpropane sulfonic acid (AMPS) and acrylamide (AM) [P(AMPS-co-AM)] or N-isopropylacrylamide (NIPAM) [P(AMPS-co-NIPAM)] as the primary network and polyacrylamide (PAM) as the secondary network. The as-prepared IPN hydrogel of P(AMPS-co-AM)/PAM has a significantly high compressive strength (91.8 MPa), which is 4 times greater than that of the common PAMPS/PAM IPN hydrogel as well as the compressively strongest hydrogel reported in the literature. The P(AMPS-co-AM)/PAM IPN hydrogel is tough enough not to fracture even when the compressive strain reaches 98%. Synchrotron radiation small-angle X-ray scattering (SAXS) analysis has indicated that the presence of an AM comonomer changes the size of the physically cross-linked domains in the IPN hydrogel, which may partially account for its unique mechanical properties. This study has presented the compressively strongest hydrogel reported to date and also provided a novel and feasible method to prepare the highly strong and tough hydrogel.

Graphical abstract: A strong and tough interpenetrating network hydrogel with ultrahigh compression resistance

Article information

Article type
Paper
Submitted
26 Jan 2014
Accepted
19 Mar 2014
First published
14 Apr 2014

Soft Matter, 2014,10, 3850-3856

A strong and tough interpenetrating network hydrogel with ultrahigh compression resistance

L. Wang, G. Shan and P. Pan, Soft Matter, 2014, 10, 3850 DOI: 10.1039/C4SM00206G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements