Skip to main content
Log in

Aspects of lanthanide complexes for selectivity, intensity and sharpness in luminescence bands from twenty-four praseodymium, europium and gadolinium complexes with differently distorted-hexadentate ligands

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We structurally and spectroscopically investigated a series of praseodymium (Pr) complexes with eight ligands that form helicate molecular structures. The mother ligand skeleton (L) has two bipyridine moieties bridged with ethylenediamine. The bridged skeleton of PrL was changed to diamines 1–methyl-ethy-lenediamine, trimethylenediamine and 2,2’-dimethyl-trimethylenediamine, and the corresponding ligands were designated as Lme, Lpr and Ldmpr, for each Pr in these complexes upon UV-excitation. The luminescence quantum yields of PrL and PrLpr in the visible and near infrared (NIR) regions indicate that PrL is excited by both the electronic state of the ligand and the ff absorption band, whereas PrLpr is excited through the ligand. The addition of a methyl group to PrL and PrLpr has a different effect on the Pr emission intensity with the intensity of PrLme decreasing more than that of PrL and prLdmpr and increasing more than that of PrLpr. Thus, the coordination of Pr and the increased rigidity of the ligand upon methyl-ation enhance luminescence. The azomethine moieties on Lme, Lpr and Ldmpr were reduced and formed the corresponding PrLH, PrLmeH, PrLprH and prLdmprH complexes. The luminescence of the non-methylated series is due to transitions related to the 1D2 level and thus the methylated series luminesces due to high energy levels such as 3PJ arising from the shortened π electronic systems. We also discuss the strong red emission of a series of Eu complexes with eight ligands from the viewpoint of their molecular structures and luminescence efficiencies and evaluate the Judd-Ofelt parameters from the luminescence spectra of Eu complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Weissman, J. Chem. Phys., 1942, 10, 214–217.

  2. J.-C. G. Bünzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048–1077.

  3. E. G. Moore, A. P. S. Samuel and K. N. Raymond, Acc. Chem. Res., 2009, 42, 542–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. L. Dai, W.-S. Lo, Y. Gu, Q. Xiong, K.-L. Wong, W.-M. Kwok, W.-T. Wong and G.-L. Law, Chem. Sci., 2019, 10, 4550–4559.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. P. A. Tanner and C.-K. Duan, Coord. Chem. Rev., 2010, 254, 3026–3029.

  6. G.-L. Law, K.-L. Wong, K.-K. Lau, S. Lap, P. A. Tanner and W.-T. Wong, J. Mater. Chem. C, 2010, 20, 4074–4079.

    CAS  Google Scholar 

  7. G.-L. Law, K.-L. Wong, X. Zhou, W.-T. Wong and P. A. Tanner, Inorg. Chem., 2005, 44, 4142–4144.

    CAS  PubMed  Google Scholar 

  8. J.-C. G. Biinzli, A.-S. Chauvin, H. K. Kim, E. Deiters and S. V. Eliseeva, Coord. Chem. Rev., 2010, 254, 2623–2633.

    Google Scholar 

  9. J.-C. G. Biinzli, Coord. Chem. Rev., 2015, 293–294, 19–47.

  10. S. J. Butler and D. Parker, Coord. Chem. Rev., 2013, 42, 1652–1666.

  11. B.-B. Du, Y.-X. Zhu, M. Pan, M.-Q. Yue, Y.-J. Hou, K. Wu, L.-Y Zhang, L. Chen, S.-Y Yin, Y.-N. Fana and C.-Y Su, Chem. commun., 2015, 51, 12533.

    CAS  Google Scholar 

  12. M. Pan, B.-B. Du, Y.-X. Zhu, M.-Q. Yue, Z.-W. Wei and C.-Y. Su, Chem. -Eur. J., 2016, 22, 2440–2451.

    CAS  PubMed  Google Scholar 

  13. S. V. Eliseeva, V. S. Liasotkyi, I. P. Golovach, P. G. Doga, V. P. Antonovich, S. Petoud and S. B. Meshkova, Methods Appl. Fluoresc., 2017, 5, 014002.

    PubMed  Google Scholar 

  14. S. Ashokkumar, S. Ravi, V. Kathiravan and S. Velmurugan, Spectrochim. Acta, Part A, 2017, 171, 526.

    CAS  Google Scholar 

  15. K. Lorenz, E. Nogales, S. M. C. Miranda, N. Franco, B. Méndez, E. Alves, G. Tourbot and B. Daudin, Acta Mater., 2013, 61, 3278–3284.

    CAS  Google Scholar 

  16. H. Sun, D. Peng, X. Wang, M. Tang, Q. Zhang and X. Yao, J. Appl. Phys., 2011, 110, 016102.

    Google Scholar 

  17. W.-M. Liao, C.-J. Li, X. Wu, J.-H. Zhang, Z. Wang, H.-P. Wang, Y.-N. Fan, M. Pan and C.-Y. Su, J. Mater. Chem. C, 2018, 6, 3254–3259.

    CAS  Google Scholar 

  18. G. Pawlicki and S. Lis, Opt. Mater., 2011, 33, 1544–1547.

  19. R. V. Fox, R. D. Ball, P. d. B. Harrington, H. W. Rollins, J. J. Jolley and C. M. Wai, J Supercrit. Fluids, 2004, 31, 273–286.

  20. M. Irfanullah and K. Iftikhar, J. Fluoresc, 2011, 21, 673–686.

  21. V. M. Pereira, A. L. Costa, J. Feldl, T M. R. Maria, J. S. Seixas de Melo, P. Martín-Ramos, J. Martín-Gil and M. R. Silva, Spectrochim. Acta, Part A, 2017, 172, 25–33.

    CAS  Google Scholar 

  22. M. A. Zaitoun, A. K. El-Qisairi, K. A. Momani, H. A. Qaseer and Q. M. Jaradat, Spectrochim. Acta, Part A, 2015, 136, 1745–1750.

    CAS  Google Scholar 

  23. E. A. Mikhalyova, A. V. Yakovenko, M. Zeller, K. S. Gavrilenko, S. E. Lofland, A. W. Addison and V. V. Pavlishchuk, Inorg. Chim. Acta, 2014, 414, 97–104.

    CAS  Google Scholar 

  24. P. R. Matthes, J. Nitsch, A. Kuzmanoski, C. Feldmann, A. Steffen, T. B. Marder and K. Müller-Buschbaum, Chem. -Eur. J., 2013, 19, 17369–17378.

    CAS  PubMed  Google Scholar 

  25. L. Wang, W. Gu, X.-J. Deng, L.-F. Zeng, S.-Y. Liao, M. Zhang, L.-Y Yang and X. Liu, Aust. J. Chem., 2011, 64, 1373–1382.

    CAS  Google Scholar 

  26. X. S. Tai and L. T. Wang, Adv. Mater. Res., 2011, 219–220, 565–568.

  27. S. B. Meshkova, Z. M. Topilova, V. S. Matiichuk, N. T. Pokhodylo, I. P. Kovalevskaya, I. M. Rakipov and P. G. Doga, Russ.J. Coord. Chem., 2011, 37, 309–315.

    CAS  Google Scholar 

  28. R. Feng, F.-L. Jiang, M.-Y Wu, L. Chen, C.-F. Yan and M.-C. Hong, Cryst. Growth Des., 2010, 10, 2306–2313.

    CAS  Google Scholar 

  29. Z. A. Siddiqi, M. Shahid, M. Khalid, S. Noor and S. Kumar, Spectrochim. Acta, Part A, 2009, 74, 391–397.

    Google Scholar 

  30. M. D. Regulado, M. H. Pablico, J. A. Vasquez, P. N. Myers, S. Gentry, M. Prushan, S.-W. Tam-Chang and S. L. Stoll, Inorg. Chem., 2008, 47, 1512–1523.

    Google Scholar 

  31. S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura and F. Barigelletti, Inorg. Chem., 2005, 44, 529–537.

    CAS  PubMed  Google Scholar 

  32. N. Yoshida, A. Matsumoto and J. Shiokawa, Bull. Chem. Soc. Jpn., 1974, 47, 648–651.

    CAS  Google Scholar 

  33. G. M. Davies, H. Adams, S. J. A. Pope, S. Faulkner and M. D. Ward, Photochem. Photobiol. Sci., 2005, 4, 829–834.

    CAS  PubMed  Google Scholar 

  34. G. M. Davies, R. J. Aarons, G. R. Motson, J. C. Jeffery, H. Adams, S. Faulkner and M. D. Ward, Dalton Trans., 2004, 1136–1144.

  35. N. K. Al-Rasbi, S. Derossi, D. Sykes, S. Faulkner and M. D. Ward, Polyhedron, 2009, 28, 227–232.

    CAS  Google Scholar 

  36. L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser and C. Piguet, Coord. Chem. Rev., 2012, 256, 1644–1663.

    CAS  Google Scholar 

  37. S. B. Meshkova, A. V. Kiriyak and Z. M. Topilova, J. Appl. Spectrosc, 2006, 73, 834–840.

    CAS  Google Scholar 

  38. S. B. Meshkova, A. V. Kiriyak, Z. M. Topilova and V. P. Antonovich, J. Anal. Chem., 2007, 62, 362–365.

    CAS  Google Scholar 

  39. M. Hasegawa, A. Ishii and S. Kishi, J. Photochem. Photobiol., A, 2006, 178, 220–224.

    CAS  Google Scholar 

  40. E. C. Constable, R. Chotalia and D. A. Tocher, J. Chem. Soc., Chem. commun., 1992, 771–773.

  41. C. Piguet and J.-C. G. Bünzli, in Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, J.-C. G. Biinzli and V. K. Pecharski, Elsevier, 2010, vol. 40, pp. 301–553.

  42. M. Hasegawa, H. Ohtsu, D. Kodama, T Kasai, S. Sakurai, A. Ishii and K. Suzuki, New J. Chem., 2014, 38, 1225–1234.

    CAS  Google Scholar 

  43. H. Wada, S. Ooka, D. Iwasawa, M. Hasegawa and T Kajiwara, Magneto chemistry, 2016, 2, 43.

    Google Scholar 

  44. M. Hatanaka, A. Osawa, T. Wakabayashi, K. Morokuma and M. Hasegawa, Phys. Chem. Chem. Phys., 2018, 20, 3328–3333.

    CAS  PubMed  Google Scholar 

  45. Y Hasegawa, A. Ishii, Y Inazuka, N. Yajima, S. Kawaguchi, K Sugimoto and M. Hasegawa, Molecules, 2018, 23, 55.

    PubMed Central  Google Scholar 

  46. M. Hasegawa, D. Iwasawa, T Kawaguchi, H. Koike, A. Saso, S. Ogata, A. Ishii, H. Ohmagari, M. Iwamura and K. Nozaki, ChemPlusChem, 2020, 85, 294–300.

    CAS  PubMed  Google Scholar 

  47. G. H. Dieke and H. M. Crosswhite, Appl. Opt., 1963, 2, 675–686.

  48. W. T Carnall, P. R. Fields and R. Sarup, J. Chem. Phys., 1969, 51, 2587–2591.

    CAS  Google Scholar 

  49. W. T Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4424–4442.

    CAS  Google Scholar 

  50. M. D. Ward, Coord. Chem. Rev., 2010, 254, 2634–2642.

  51. D. L. Dexter, J. Chem. Phys., 1953, 21, 836–850.

  52. B. R. Judd, Phys. Rev., 1962, 127, 750–761.

  53. G. S. Ofelt, J Chem. Phys., 1962, 37, 511–520.

  54. K. Binnemans, Coord. Chem. Rev., 2015, 295, 1–45.

  55. S. Wada, Y Kitagawa, T Nakanishi, M. Gon, K. Tanaka, K Fushimi, Y Chujo and Y Hasegawa, Sci. Rep., 2018, 8, 16395.

    PubMed  PubMed Central  Google Scholar 

  56. S. Ogata, N. Goto, S. Sakurai, A. Ishii, M. Hatanaka, K. Yoshihara, R. Tanabe, K. Kayano, R. Magaribuchi, K Goto and M. Hasegawa, Dalton Trans., 2018, 47, 7135–7143.

    CAS  PubMed  Google Scholar 

  57. S. Ogata, H. Komiya, N. Goto, R. Tanabe, K. Sugimoto, S. Kawaguchi, K. Goto, M. Hatanaka, A. Ishii and M. Hasegawa, Chem. Lett., 2019, 48, 593–596.

    CAS  Google Scholar 

  58. C. Y Chow, S. V. Eliseeva, E. R. Trivedi, T N. Nguyen, J. W. Kampf, S. Petoud and V. L. Pecoraro, J. Am. Chem. Soc., 2016, 138, 5100–5109.

    CAS  PubMed  Google Scholar 

  59. S. Ogata, T Shimizu, T Ishibashi, Y Ishiyone, M. Hanami, M. Ito, A. Ishii, S. Kawaguchi, K. Sugimoto and M. Hasegawa, New J. Chem., 2017, 41, 6385–6394.

    CAS  Google Scholar 

  60. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, J Appl. Crystallogr., 2005, 38, 381–388.

  61. T Gruene, H. W. Hahn, A. V. Luebben, F. Meilleur and G. M. Sheldrick, J Appl. Crystallogr., 2014, 47, 462–466.

  62. R. Katoh, K. Suzuki, A. Furube, M. Kotani and K Tokumaru, J Phys. Chem. C, 2009, 113, 2961–2965.

  63. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T Yoshihara, H. Ishida, Y Shiina, S. Oishi and S. Tobita, Phys. Chem. Chem. Phys., 2009, 11, 9850–9860.

    CAS  PubMed  Google Scholar 

  64. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Hasegawa.

Additional information

Dedicated to Professor Emeritus Dr Toshihiko Hoshi on the occasion of his 85th birthday.

Electronic supplementary information (ESI) available: Packing structures of Pr and Eu complexes, excitation spectra, NIR-luminescence spectra, luminescence decay profiles, calculation of energy transfer efficiencies, energy diagram of Pr-luminescencent complexes and 1H NMR of each ligand. CCDC 1017809, 1043544, 1017810, 1043545, 1861234, 1861235 and 1861236. For ESI and crystal-lographic data in CIF or other electronic format see DOI: 10.1039/d0pp00069h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, M., Sakurai, S., Yamaguchi, M.A. et al. Aspects of lanthanide complexes for selectivity, intensity and sharpness in luminescence bands from twenty-four praseodymium, europium and gadolinium complexes with differently distorted-hexadentate ligands. Photochem Photobiol Sci 19, 1054–1062 (2020). https://doi.org/10.1039/d0pp00069h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00069h

Navigation