Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Application of support vector machines for fault diagnosis in power transmission system

Application of support vector machines for fault diagnosis in power transmission system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Post-fault studies of recent major power failures around the world reveal that mal-operation and/or improper co-ordination of protection system were responsible to some extent. When a major power disturbance occurs, protection and control action are required to stop the power system degradation, restore the system to a normal state and minimise the impact of the disturbance. However, this has indicated the need for improving protection co-ordination by additional post-fault and corrective studies using intelligent/knowledge-based systems. A process to obtain knowledge-base using support vector machines (SVMs) is presented for ready post-fault diagnosis purpose. SVMs are used as Intelligence tool to identify the faulted line that is emanating and finding the distance from the substation. Also, SVMs are compared with radial basis function neural networks in datasets corresponding to different fault on transmission system. Classification and regression accuracies are is reported for both strategies. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighbouring line connected to the same substation. This may help to improve the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. To validate the proposed approach, results on IEEE 39-Bus New England system are presented for illustration purpose.

References

    1. 1)
      • R. Salat , S. Osowski . Accurate fault location in the power transmission line using support vector machine approach. Power Syst., IEEE Trans. , 2 , 979 - 986
    2. 2)
      • M.D. Buhmann . (2003) Radial basis functions: theory and implementations.
    3. 3)
      • http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf.
    4. 4)
      • K.H. Kim , J.K. Park . Application of hierarchical neural networks to fault diagnosis of power systems. Int. J. Elect. Power Energy Syst. , 2 , 65 - 70
    5. 5)
      • A.G. Phadke , J.S. Thorp . Expose hidden failures to prevent cascading outages. Comput. Appl. Power IEEE , 20 - 23
    6. 6)
    7. 7)
      • S. Haykin . (1999) Neural networks: a comprehensice foundation.
    8. 8)
      • B. Schölkopf , C. Burges , A. Smola . (1999) Advances in kernel methods—support vector learning.
    9. 9)
      • C. Campbell . Kernel methods: a survey of current techniques. Neuro Comput. , 63 - 84
    10. 10)
      • J. Platt . (1999) Fast training of support vector machines using sequential minimal optimization, advance in kernel methods: support vector learning.
    11. 11)
      • J.S. Thorp , A.G. Phadke . Protecting power systems in the post-restructuring era. Comput. Appl. Power IEEE , 1 , 33 - 37
    12. 12)
      • V.N. Vapnik . (1998) Statistical learning theory.
    13. 13)
    14. 14)
      • P.S. Sastry . (2003) An introduction to support vector machine, chapter from computing and information sciences: recent trends.
    15. 15)
      • ftp://www.nerc.com/pub/sys/all_updl/docs/blackout/BlackoutTable.pdf.
    16. 16)
      • A.G. Phadke , S.H. Horowitz . Adaptive relaying. Comput. Appl. Power IEEE , 3 , 47 - 51
    17. 17)
      • D. Thukaram , H.P. Khincha , H.P. Vijaynarasimha . Artificial neural network and support vector machine approach for locating faults in radial distribution systems. Trans. Power Deliv. IEEE , 2 , 710 - 721
    18. 18)
      • C.J.C. Burges . A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discov. , 2 , 955 - 974
    19. 19)
      • http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
    20. 20)
      • Janik, P., Lobos, T., Schegner, P.: Eighth IEE International Conf. on Developments in Power System Protection, 5–8 April 2004, 2, p. 768–771.
    21. 21)
      • H.W. Dommel . Techniques for analyzing electromagnetic transients. IEEE Comput. Appl. Power , 18 - 21
    22. 22)
      • L.S. Moulin , A.P.A. da Silva , M.A. El-Sharkawi , R.J. Marks . Neural networks and support vector machines applied to power systems transient stability analysis. Int. J. Eng. Intell. Syst. , 4 , 205 - 211
    23. 23)
      • ftp://www.nerc.com/pub/sys/all_updl/docs/blackout/ch7-10.pdf.
    24. 24)
      • Weston, J., Watkins, C.: `Multi-class support vector machines', Technical Report CSD-TR-98–04, 1998, Egham, TW20 0EX, UK, available at: http://citeseer.ist.psu.edu/article/weston98multiclass.html.
    25. 25)
    26. 26)
      • Smola, A., SchÄolkopf, B.: `A tutorial on support vector regression', NeuroCOLT2 Tech Report, NC2-TR-1998–030, 1998.
    27. 27)
      • http://www.columbia.edu/itc/sociology/watts/w3233/client_edit/power_outages.html.
    28. 28)
      • http://www.eecs.wsu.edu/~mani/blackouts.PDF.
    29. 29)
      • S. Raychaudhuri , J.M. Stuart , R.B. Altman . Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac. Symp. Biocomput. , 455 - 66
    30. 30)
      • Chang, C.-C., Lin, C-J.: `LIBSVM: a library for support vector machines', 2001, available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    31. 31)
      • T. Joachims . (1998) Making large-scale SVM learning practical. Advances in Kernel Methods – Support Vector Learning.
    32. 32)
      • J. Platt , N. Cristianini , J. Shawe-Taylor . (2000) Large margin dags for multiclass classification, Advances in neural information processing systems.
    33. 33)
      • V. Vapnik . (1995) The nature of statistical learning theory.
    34. 34)
      • H.W. Dommel . Digital computer solution of electromagnetic transient in single and multiphase networks. IEEE Trans. , 388 - 398
    35. 35)
      • S.H. Horowitz , A.G. Phadke . Boosting immunity to blackouts. Power Energy Mag. IEEE , 5 , 47 - 53
    36. 36)
      • D. Karlsson , H. Morten , S. Lindhal . Wide area system monitoring and control. IEEE Power Energy Syst. , 68 - 76
    37. 37)
    38. 38)
      • Lin, H.-T., Lin, C.-J.: `A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods', Technical report,, 2003, available at: http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf.
    39. 39)
      • P. Janik , T. Lobos . Automated classification of power-quality disturbances using SVM and RBF networks. Power Deliv. IEEE Trans. , 3 , 1663 - 1669
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd_20070071
Loading

Related content

content/journals/10.1049/iet-gtd_20070071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address