Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comparative study on impacts of wind profiles on thermal units scheduling costs

Comparative study on impacts of wind profiles on thermal units scheduling costs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although wind power is a sustainable, environmentally friendly and a viable option for renewable energy in many places, the effects of its intermittent nature on power systems need to be carefully examined. This study investigates the effects of different wind profiles on the scheduling costs of thermal generation units. Two profiles are considered: synoptic-dominated and diurnal-dominated variations of aggregated wind power. To simulate the wind profile impacts, a linear mixed integer unit commitment problem is formulated in a general algebraic modelling system (GAMS) environment. The uncertainty associated with wind power is represented using a chance constrained formulation. The simulation results illustrate the significant impacts of different wind profiles on fuel saving benefits, startup costs and wind power curtailments. In addition, the results demonstrate the importance of the wide geographical dispersion of wind power production facilities to minimise the impacts of network constraints on the value of the harvested wind energy and the amount of curtailed energy.

References

    1. 1)
    2. 2)
    3. 3)
      • M. Ortega-Vazquez , D. Kirschen . Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans. Power Syst. , 114 - 124
    4. 4)
    5. 5)
    6. 6)
      • P.M. Subcommittee . IEEE reliability test system. IEEE Trans. Power Appar. Syst. , 2047 - 2054
    7. 7)
    8. 8)
      • L. Landberg , G. Giebel , H. Nielsen , T. Nielsen , H. Madsen . Short-term prediction – an overview. Wind Energy , 273 - 280
    9. 9)
      • C. Yingvivatanapong , W.-J. Lee , E. Liu . Multi-area power generation dispatch in competitive markets. IEEE Trans. Power Syst. , 196 - 203
    10. 10)
    11. 11)
      • R. Piwko , D. Osborn , R. Gramlich , G. Jordan , D. Hawkins , K. Porter . Wind energy delivery issues [transmission planning and competitive electricity market operation]. IEEE Power Energ. Mag. , 47 - 56
    12. 12)
      • P. Ruiz , R. Philbrick , E. Zak , K. Cheung , P. Sauer . Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. , 642 - 651
    13. 13)
      • Yingvivatanapong, C.: `Multi-area unit commitment and economic dispatch with market operation components', 2006, PhD, The University of Texas at Arlington.
    14. 14)
      • B. McCarl . (2008) McCarl GAMS user guide’ (GAMS Development Corporation.
    15. 15)
      • U. Focken , M. Lange , K. Moennich , H.P. Waldl , H.G. Beyer , A. Luig . Short-term prediction of the aggregated power output of wind farms – a statistical analysis of the reduction of the prediction error by spatial smoothing effects. J. Wind Eng. Ind. Aerodyn. , 231 - 246
    16. 16)
      • N. Amjady . Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. , 798 - 805
    17. 17)
      • M. Lange , U. Focken . (2006) Physical approach to short-term wind power prediction.
    18. 18)
      • Hasche, B., Barth, R., Swider, D.: `Effects of improved wind forecasts on operational costs in the German electricity system', Proc. EcoMod Conf. Energy and Environmental Modeling, 13–14 September 2007, Moscow, Russia, p. 1–23.
    19. 19)
      • J. Gubner . (2006) Probability and random processes for electrical and computer engineers.
    20. 20)
      • K. Methaprayoon , C. Yingvivatanapong , L. Wei-Jen , J. Liao . An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty. IEEE Trans. Ind. Appl. , 1441 - 1448
    21. 21)
    22. 22)
      • T. Ackermann . (2005) Wind power in power systems.
    23. 23)
      • J. Smith , M. Milligan , E. DeMeo , B. Parsons . Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. , 900 - 908
    24. 24)
      • H. Gil , J.C. Deslauriers , L. Dignard-Bailey , G. Joos . (2006) Integration of wind generation with power systems in Canada – overview of technical and economic impacts.
    25. 25)
    26. 26)
      • F. Bouffard , F. Galiana . Stochastic security for operations planning with significant wind power generation. IEEE Trans. Power Syst. , 2 , 306 - 316
    27. 27)
    28. 28)
      • Holttinen, H.: `Design and operation of power systems with large amounts of wind power, first results of IEA collaboration', Proc. Global Wind Power Conf., 18–21 September 2006, Adelaide, Australia, p. 1–15.
    29. 29)
      • L. Soder . Reserve margin planning in a wind-hydro-thermal power system. IEEE Trans. Power Syst. , 564 - 571
    30. 30)
      • J. Dupačová , N. Gröwe-Kuska , W. Römisch . Scenario reduction in stochastic programming. Math. Program. , 493 - 511
    31. 31)
      • H. Bludszuweit , J. Dominguez-Navarro , A. Llombart . Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. , 983 - 991
    32. 32)
      • Smith, J., Milligan, M., DeMeo, E., Parsons, B.: `Wind power impacts on electric power system operating costs: summary and perspective on work to data', Proc. AWEA Global Wind Power Conf., 29–31 March 2004, Chicago, IL, p. 1–11.
    33. 33)
      • P. Meibom , C. Weber , R. Barth , H. Brand . Operational costs induced by fluctuating wind power production in Germany and Scandinavia. IET Renew. Power Gener. , 75 - 83
    34. 34)
      • Meibom, P., Barth, R., Brand, H., Weber, C.: `Wind power integration studies using a multi-stage stochastic electricity system model', Proc. IEEE 2007 PES General Meeting, 24–28 June 2007, Tampa, FL, UAS, p. 1–4.
    35. 35)
      • Wind turbines generate more than 1% of the global electricity.
    36. 36)
      • V. Pappala , I. Erlich , K. Rohrig , J. Dobschinski . A stochastic model for the optimal operation of a wind-thermal power system. IEEE Trans. Power Syst. , 642 - 651
    37. 37)
    38. 38)
      • C. Yu , L. Wang , F. Wen , T. Chung . Optimal spinning reserve capacity determination using a chance-constrained programming approach. Electr. Power Compon. Syst. , 1131 - 1143
    39. 39)
      • Independent Electricity System Operator of Ontario: ‘Hourly wind generator output’, http://www.ieso.ca/imoweb/marketdata/marketData.asp.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2009.0101
Loading

Related content

content/journals/10.1049/iet-rpg.2009.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address