Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Graph theory and networks in Biology

Graph theory and networks in Biology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A survey of the use of graph theoretical techniques in Biology is presented. In particular, recent work on identifying and modelling the structure of bio-molecular networks is discussed, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronisation and disease propagation.

References

    1. 1)
      • Ganesh, J., Massoulie, L., Towsley, D.: `The effect of network topology on the spread of epidemics', IEEE Infocom, 2005.
    2. 2)
      • K. Kauffman , P. Prakash , J. Edwards . Advances in flux balance analysis. Curr. Opin. Biotechnol. , 491 - 496
    3. 3)
      • B. Bollobás . (2001) Random graphs.
    4. 4)
      • Z. Bar-Joseph , G.K. Gerber , T.I. Lee . Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. , 11 , 1337 - 1342
    5. 5)
      • A. Potapov . Topology of mammalian transcription networks. Genome Inform. , 2 , 270 - 278
    6. 6)
      • H. Jeong , S.P. Mason , A.L. Barabasi , Z.N. Oltvai . Lethality and centrality in protein networks. Nature , 41 - 42
    7. 7)
      • H. Salgado , A. Santos-Zavaleta , S. Gama-Castro . The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinf. , 5
    8. 8)
    9. 9)
      • S. Mangan , U. Alon . Structure and function of the feed-forward loop network motif. Proc. Nat. Acad. Sci. , 21 , 11980 - 11985
    10. 10)
    11. 11)
      • F. Liljeros , C.R. Edling , L.A. Nunes Amaral , H.E. Stanley , Y. Åberg . The web of human sexual contacts. Nature , 907 - 908
    12. 12)
      • L.V. Zhang , O.D. King , S.L. Wong . Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. BMC J. Biol.
    13. 13)
      • B. Bollobas , O. Riordan , S. Bornholdt , H. Schuster . (2002) Mathematical results on scale-free graphs in, Handbook of graphs and networks.
    14. 14)
      • R. Albert , H. Jeong , A. Barabasi . Diameter of the world-wide web. Nature , 130 - 131
    15. 15)
      • M. Newman . A measure of betweenness centrality based on random walks. Soc. Netw. , 39 - 54
    16. 16)
      • J.P. Lachaux , E. Rodriguez , J. Martinerie , F.J. Varela . Measuring phase synchrony in brain signals. Hum Brain Map. , 194 - 208
    17. 17)
    18. 18)
      • A. Vazquez , A. Flammini , A. Maritan , A. Vespignani . Global protein function prediction from protein–protein interaction networks. Nat. Biotechnol. , 6 , 697 - 700
    19. 19)
      • S. Borgatti , K. Carley , D. Krackhardt . On the robustness of centrality measures under conditions of imperfect data. Soc. Netw. , 124 - 136
    20. 20)
    21. 21)
      • R. Mahadevan , B. Palsson . Properties of metabolic networks: structure versus function. Biophy. Lett. , L07 - L09
    22. 22)
      • S. Wuchty , P. Stadler . Centers of complex networks. J. Theor. Biol. , 45 - 53
    23. 23)
    24. 24)
      • A. Wagner , D. Fell . The small world inside large metabolic networks. Proc. Roy. Soc. - B , 1803 - 1810
    25. 25)
      • V. Latora , M. Marchiori . (2004) A measure of centrality based on the network efficiency.
    26. 26)
      • A. Bhan , D. Galas , T. Dewey . A duplication growth model of gene expression networks. Bioinformatics , 11 , 1486 - 1493
    27. 27)
      • G. Kalna , D. Higham . (2006) Clustering coefficients for weighted networks, ‘Adaptation in artificial and biological systems’, Proceedings of Adaptations in Artifical and Biological Systems.
    28. 28)
      • R. Dobrin , Q.K. Beg , A.L. Barabási , Z.N. Oltvai . Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform.
    29. 29)
      • K. Stephenson , M. Zelen . Rethinking centrality: methods and examples. Soc. Netw. , 1 - 37
    30. 30)
    31. 31)
      • A.L. Barabasi , Z.N. Oltvai . Network biology: understanding the cell's functional organization. Nat. Rev. Genet. , 101 - 113
    32. 32)
      • M.P. Joy , A. Brock , D.E. Ingber , S. Huang . High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. , 96 - 103
    33. 33)
    34. 34)
      • A. Schnitzler , J. Gross . Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. , 285 - 296
    35. 35)
      • E. Nabieva , K. Jim , A. Agarwal , B. Chazelle , M. Singh . Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics , i302 - i310
    36. 36)
      • L. Giot , J.S. Bader , C. Brouwer , A. Chaudhuri , B. Kuang . A protein interaction map of Drosophila melanogaster. Science , 1727 - 1736
    37. 37)
      • A. Barrat , M. Barthélemy , R. Pastor-Satorras , A. Vespignani . The architecture of complex weighted networks. Proc. Nat. Acad. Sci. , 11 , 3747 - 3752
    38. 38)
    39. 39)
    40. 40)
      • N. Kashtan , S. Itzkovitz , R. Milo , U. Alon . Topological generalizations of network motifs. Phys. Rev. E.
    41. 41)
      • A. Wagner . The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. , 7 , 1283 - 1292
    42. 42)
      • E. Segal , M. Shapira , A. Regev . Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. , 2 , 166 - 176
    43. 43)
      • T.I. Lee , N.J. Rinaldi , F. Robert . Transcriptional regulatory networks in Saccharomyces cerevisiae. Science , 799 - 804
    44. 44)
      • F. Brauer , C. Castillo-Chavez . (2000) Mathematical models in population biology and epidemiology.
    45. 45)
      • J. Ihmels , G. Friedlander , S. Bergmann , O. Sarig , Y. Ziv , N. Barkai . Revealing modular organization in the yeast transcriptional network. Nat. Genetics , 370 - 377
    46. 46)
      • C.L. Freeman . A set of measures of centrality based on betweenness. Sociometry , 35 - 41
    47. 47)
      • H. Jeong , B. Tombor , R. Albert , Z.N. Oltvai , A.L. Barabasi . The large-scale organization of metabolic networks. Nature , 651 - 654
    48. 48)
      • R. Milo , S. Itzkovitz , N. Kashtan . Superfamilies of evolved and designed networks. Science , 1538 - 1542
    49. 49)
      • A.H. Tong , G. Lesage , G.D. Bader , H. Ding , H. Xu . Global mapping of the yeast genetic interaction network. Science , 808 - 813
    50. 50)
      • M. Stumpf , C. Wiuf , R. May . Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc. Nat. Acad. Sci. , 12 , 4221 - 4224
    51. 51)
      • J. Yang , Z. Gu , W. Li . Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol. , 5 , 772 - 774
    52. 52)
    53. 53)
      • J. Edwards , R. Ibarra , B. Palsson . In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. , 125 - 130
    54. 54)
      • B. Bollobas , O. Riordan . The diameter of a scale-free random graph. Combinatorica , 5 - 34
    55. 55)
      • P. Bonacich . Power and centrality: a family of measures. Am. J. Sociol. , 1170 - 1182
    56. 56)
    57. 57)
    58. 58)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    59. 59)
      • L. Donetti , M. Munoz . (2004) Detecting network communities: a new systematic and efficient algorithm.
    60. 60)
      • L. Glass . Synchronization and rhythmic processes in physiology. Nature , 277 - 284
    61. 61)
      • H.W. Mewes , K. Albermann , K. Heumann , S. Liebl , F. Pfeiffer . MIPS: a database for genomes and protein sequences. Nucleic Acids Res. , 1 , 31 - 34
    62. 62)
      • S. Strogatz . Arthur Winfree (obituary). SIAM News , 1
    63. 63)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    64. 64)
      • I.K. Jordan , I.B. Rogozin , Y.I. Wolf , E.V. Koonin . Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. , 962 - 968
    65. 65)
      • G. Conant , A. Wagner . Convergent evolution of gene circuits. Nat. Genet. , 3 , 264 - 266
    66. 66)
      • N. Guelzim , S. Bottani , P. Bourgine , F. Képès . Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. , 60 - 63
    67. 67)
      • B. Zemljic , V. Hleben . Reliability of measures of centrality and prominence. Soc. Netw. , 73 - 88
    68. 68)
      • Kleinberg, J.: `Authoritative sources in a hyperlinked environment', 9thACM-SIAM Symposium on Discrete Algorithms, 1998.
    69. 69)
      • P. McGraw , M. Metzinger . Clustering and the synchronization of oscillator networks. Phys. Rev. E
    70. 70)
      • J. Stelling , S. Klamt , K. Bettenbrock , S. Schuster , E.D. Gilles . Metabolic network structure determines key aspects of functionality and regulation. Nature , 190 - 193
    71. 71)
      • P. Uetz , L. Giot , G. Cagney . A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature , 623 - 627
    72. 72)
      • J.C. Rain , L. Selig , H. De Reuse . The protein–protein interaction map of Helicobacter pylori. Nature , 211 - 215
    73. 73)
      • A. Engel , W. Singer . Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. , 1 , 16 - 25
    74. 74)
    75. 75)
      • D.E. Featherstone , K. Broadie . Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays , 267 - 274
    76. 76)
      • S. Letovsky , S. Kasif . Predicting protein function from protein–protein interaction data: a probabilistic approach. Bioinformatics , i197 - i204
    77. 77)
      • J. Pereira-Leal , A. Enright , C. Ouzounis . Detection of functional modules from protein interaction networks. PROTEINS: Struct. Funct. Bioinf. , 49 - 57
    78. 78)
      • R. Ibarra , J. Edwards , B. Palsson . Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature , 186 - 189
    79. 79)
    80. 80)
    81. 81)
      • S.H. Yook , Z.N. Oltvai , A.L. Barabási . Functional and topological characterization of protein interaction networks. Proteomics , 928 - 942
    82. 82)
      • M. Barahona , L. Pecora . Synchronization in small-world systems. Phys. Rev. Lett. , 5
    83. 83)
      • V. Colizza , A. Barrat , M. Barthelemy , A. Vespignani . The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. USA , 7 , 2015 - 2020
    84. 84)
      • R.V. Sole , R. Pastor-Satorras , E. Smith , T.B. Kepler . A model of large scale proteome evolution. Adv Complex Sys. , 43 - 54
    85. 85)
      • F. Chung , L. Lu . Coupling online and offline analyses for random power law graphs. Internet Math. , 4 , 409 - 461
    86. 86)
      • E. Estrada . (2005) Virtual identification of essential proteins within the protein interaction network of yeast.
    87. 87)
      • J. Edwards , B. Palsson . The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics and capabilities. Proc. Nat. Acad. Sci. , 10 , 5528 - 5533
    88. 88)
    89. 89)
      • R. Milo , S. Itzkovitz , N. Kashtan , R. Levitt , U. Alon . Response to comment on network motifs, simple building blocks of complex networks and superfamilies of evolved and designed networks. Science
    90. 90)
      • S. Wuchty . Scale-free behaviour in protein domain networks. Mol. Biol. Evol. , 9 , 1694 - 1702
    91. 91)
      • E. Costander , T. Valente . The stability of centrality measures when networks are sampled. Soc. Netw. , 283 - 307
    92. 92)
    93. 93)
      • E. Yeger-Lotem , S. Sattath , N. Kashtan . Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc. Nat. Acad. Sci. , 16 , 5934 - 5939
    94. 94)
    95. 95)
      • A. Langville , C. Meyer . A survey of eigenvector methods for web information retrieval. SIAM Rev. , 1 , 135 - 161
    96. 96)
    97. 97)
      • J. Keener , J. Sneyd , J.E. Marsden , L. Sirovich . (1998) Mathematical physiology, Interdisciplinary applied mathematics.
    98. 98)
      • B. Schwikowski , P. Uetz , S. Fields . A network of protein–protein interactions in yeast. Nat. Biotechnol. , 1257 - 1261
    99. 99)
      • G. Palla , I. Derenyi , I. Farkas , T. Vicsek . Uncovering the overlapping community structure of complex networks in nature and society. Nature , 814 - 818
    100. 100)
    101. 101)
      • A. Valencia , F. Pazos . Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. , 368 - 373
    102. 102)
      • H. Hishigaki , K. Nakai , T. Ono , A. Tanigami , T. Takagi . Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast , 523 - 531
    103. 103)
    104. 104)
      • J.D. Han , D. Dupuy , N. Bertin , M.E. Cusick , M. Vidal . Effect of sampling on topology predictions of protein–protein interaction networks. Nat. Biotechnol. , 7 , 839 - 844
    105. 105)
      • J. Hurtado , L. Rubchinsky , K. Sigvardt . Statistical method for detection of phase-locking episodes in neural oscillations. J. Neurophysiol. , 1883 - 1898
    106. 106)
    107. 107)
      • Jadbabaie, A., Motee, N., Marahona, M.: `On the stability of the Kuramoto model of coupled nonlinear oscillators', Proc. American Control Conf., 2004, Boston, MA.
    108. 108)
      • B.F. O'Donnell , M.A. Wilt , C.A. Brenner , T.A. Busey , J.S. Kwon . EEG synchronization deficits in schizophrenia spectrum disorders. Int. Congress Ser. , 697 - 703
    109. 109)
      • U. Alon . Biological networks: the tinkerer as engineer. Science , 1866 - 1867
    110. 110)
      • D. Segre , D. Vitkup , G. Church . Analysis of optimality in natural and perturbed metabolic networks. Proc. Nat. Acad. Sci. , 23 , 15112 - 15117
    111. 111)
      • K.M. Spencer , P.G. Nestor , M.A. Niznikiewicz , D.F. Salisbury , M.E. Shenton , R.W. McCarley . Abnormal neural synchrony in schizophrenia. J. Neurosc. , 19 , 7407 - 7411
    112. 112)
      • D. Bray . Molecular networks: the top-down view. Science , 1864 - 1865
    113. 113)
      • R. Albert , A. Barabasi . The statistical mechanics of complex networks. Rev. Mod. Phys. , 47 - 97
    114. 114)
      • S. Wasserman , K. Faust . (1994) Social network analysis: methods and applications.
    115. 115)
      • D. Segre , A. De Luna , G. Church , R. Kishony . Modular epistasis in yeast metabolism. Nat. Genet. , 1 , 77 - 83
    116. 116)
      • A.L. Barabási , R. Albert . Emergence of scaling in random networks. Science , 509 - 512
    117. 117)
    118. 118)
      • J. Berg , M. Lassig , A. Wagner . Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol. Biol.
    119. 119)
      • M. Boguna , R. Pastor-Satorras . Epidemic spreading in correlated complex networks. Phys. Rev. E
    120. 120)
      • A.C. Gavin , M. Bosche , R. Krause , P. Grandi , M. Marzioch . Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature , 141 - 147
    121. 121)
      • G. Lahav , N. Rosenfeld , A. Sigal . Dynamics of the p53-Mdm2 feednack loop in individual cells. Nat. Genet. , 2 , 147 - 150
    122. 122)
      • F. Varela , J.P. Lachaux , E. Rodriguez , J. Martinerie . The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. , 229 - 239
    123. 123)
      • S. Wuchty , Z. Oltvai , A. Barabasi . Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. , 2 , 176 - 179
    124. 124)
      • N. Lemke , F. Herédia , C.K. Barcellos , A.N. dos Reis , J.C.M. Mombach . Essentiality and damage in metabolic networks. Bioinformatics , 1 , 115 - 119
    125. 125)
      • A. Berman , R. Plemmons . Non-negative matrices in the mathematical sciences. SIAM Class. appl. Math.
    126. 126)
    127. 127)
      • C. Pal , B. Papp , D. Hurst . Communication on protein dispensability and rate of evolution. Nature , 496 - 497
    128. 128)
      • Y. Kuramoto , H. Arakai . (1975) Lecture notes in physics, Int. Symposium on Mathematical Problems in Theoretical Physics.
    129. 129)
      • L. Freeman , S. Borgatti , D. White . Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. , 141 - 154
    130. 130)
      • L. Ancel Meyers , B. Pourbohloul , M.E.J. Newman , D.M. Skowronski , R.C. Brunham . Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. , 71 - 81
    131. 131)
      • H. Jeong , Z. Oltvai , A. Barabasi . Prediction of protein essentiality based on genomic data. ComPlexUs , 19 - 28
    132. 132)
      • M. Barthelemy , A. Barrat , R. Pastor-Satorras , A. Vespignani . Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. , 275 - 288
    133. 133)
    134. 134)
    135. 135)
    136. 136)
      • S. Maslov , K. Sneppen . Specificity and stability in topology of protein networks. Science , 910 - 913
    137. 137)
      • D. Goldberg , F. Roth . Assessing experimentally derived interactions in a small world. Proc. Nat. Acad. Sci. , 8 , 4372 - 4376
    138. 138)
      • P.D. Karp , C.A. Ouzounis , C. Moore-Kochlacs . Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. , 19 , 6083 - 6089
    139. 139)
      • J. Buck . Synchronous rhythmic flashing of fireflies, II. Q. Rev. Biol. , 3 , 265 - 289
    140. 140)
    141. 141)
      • F. Radicchi , C. Castellano , F. Cecconi , V. Loreto , D. Parisi . Defining and identifying communities in networks. Proc. Nat. Acad. Sci. , 2658 - 2663
    142. 142)
      • S. Brin , L. Page . The anatomy of a large-scale hypertextual web search engine. Comp. Netw. ISDN Syst. , 107 - 117
    143. 143)
    144. 144)
      • J. Read , M. Keeling . Disease evolution on networks: the role of contact structure. Proc. R. Soc. B , 699 - 708
    145. 145)
      • G. Bader , C. Hogue . Analysing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. , 991 - 997
    146. 146)
      • A. Vázquez , R. Dobrin , D. Sergi , J.P. Eckmann , Z.N. Oltvai , A.L. Barabási . The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Nat. Acad. Sci. , 17940 - 17945
    147. 147)
    148. 148)
      • N. Przulj , D. Wigle , I. Jurisica . Functional topology in a network of protein interactions. Bioinformatics , 3 , 340 - 348
    149. 149)
      • E. Almaas , B. Kovacs , T. Vicsek , Z.N. Oltvai , A.L. Barabási . Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature , 839 - 843
    150. 150)
      • E. Segal , R. Yelensky , D. Koller . Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics , i273 - i282
    151. 151)
      • H.B. Fraser , A.E. Hirsh , L.M. Steinmetz , C. Scharfe , M.W. Feldman . Evolutionary rate in the protein interaction network. Science , 750 - 752
    152. 152)
      • C. von Mering , R. Krause , B. Snel . Comparative assessment of large-scale data sets of protein–protein interactions. Nature , 399 - 403
    153. 153)
    154. 154)
    155. 155)
      • S. Dorogovstev , J. Mendes , A. Samukhin . Structure of growing networks with preferential linking. Phys. Rev. Lett. , 21 , 4633 - 4636
    156. 156)
      • H. Ge , Z. Liu , G.M. Church , l.M. Vida . Correlation between transcriptome and interactome data from Saccharomyces cerevisiae. Nat. Genet. , 482 - 486
    157. 157)
    158. 158)
      • A. Winfree . Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. , 15 - 42
    159. 159)
      • D. Segre , J. Zucker , J. Katz . From annotated genomes to metabolic flux models and kinetic parameter fitting. Omics , 3 , 301 - 316
    160. 160)
      • H. Yu , D. Greenbaum , H.X. Lu , X. Zhu , M. Gerstein . Genomic analysis of essentiality within protein networks. Trends Genet. , 6 , 227 - 231
    161. 161)
    162. 162)
      • Z. Dezso , Z. Oltvai , A. Barabasi . Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res. , 2450 - 2454
    163. 163)
      • A. Capoccia , V.D.P. Servedioa , G. Caldarellia , F. Colaiori . Detecting communities in large networks. Physica A , 669 - 676
    164. 164)
      • M. Newman . Fast algorithm for detecting community structure in networks. Phys. Rev. E
    165. 165)
      • R. Overbeek , N. Larsen , G.D. Pusch . WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. , 1 , 123 - 125
    166. 166)
      • J. Murray . (2002) Mathematical Biology.
    167. 167)
    168. 168)
    169. 169)
      • J. Edwards , B. Palsson . Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioikform
    170. 170)
      • R. Jansen , D. Greenbaum , M. Gerstein . Relating whole-genome expression data with protein–protein interactions. Genome Res. , 37 - 46
    171. 171)
      • E.R. Kandel , J.H. Schwartz , T.M. Jessel . (1991) Principles of neural science.
    172. 172)
      • S. Li , C.M. Armstrong , N. Bertin , H. Ge , S. Milstein . A map of the interactome network of the metazoan C. elegans. Science , 540 - 543
    173. 173)
      • A. Vazquez , A. Flammini , A. Maritan , A. Vespignani . Modeling of protein interaction networks. ComPlexUs , 38 - 46
    174. 174)
      • Y. Artzy-Randrup , S.J. Fleishman , N. Ben-Tal , L. Stone . Comment on network motifs, simple building blocks of complex networks and Superfamilies of evolved and designed networks. Science
    175. 175)
      • U. Karaoz , T.M. Murali , S. Letovsky . Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Nat. Acad. Sci. , 2888 - 2893
    176. 176)
      • S. Wuchty . Interaction and domain networks of yeast. Proteomics , 1715 - 1723
    177. 177)
      • D. Bu , Y. Zhao , L. Cai . Topological structure analysis of the protein–protein interaction network in budding yeast’. Nucleic Acids Res. , 9 , 2443 - 2450
    178. 178)
      • A. Sawa , S. Snyder . Schizophrenia: diverse approaches to a complex disease. Science , 692 - 695
    179. 179)
      • P. Peebles . (2000) Probability, random variables, and random signal principles.
    180. 180)
      • M. Kanehisa , S. Goto . KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. , 1 , 27 - 30
    181. 181)
    182. 182)
      • S. Mangan , A. Zaslaver , U. Alon . The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. , 197 - 204
    183. 183)
      • P. Bonacich . Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. , 113 - 120
    184. 184)
      • H. Salgado , S. Gama-Castro , M. Peralta-Gil . RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. , 1 , D394 - D397
    185. 185)
      • A. Pikovsky , M. Rosenblum , J. Kurths . (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge nonlinear sciences.
    186. 186)
      • M. Samanta , S. Liang . Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. Nat. Acad. Sci. , 22 , 12579 - 12583
    187. 187)
      • A.J. Enright , S. Van Dongen , C.A. Ouzounis . An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. , 7 , 1575 - 1584
    188. 188)
      • H. Ma , J. Buer , A. Zeng . Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinform.
    189. 189)
      • P. Holmes , M. Huss , H. Jeong . Subnetwork hierarchies of biochemical pathways. Bioinformatics , 4 , 532 - 538
    190. 190)
    191. 191)
      • N. Duarte , M. Herrgard , B. Palsson . Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. , 1298 - 1309
    192. 192)
      • E. Ravasz , A.L. Somera , D.A. Mongru , Z.N. Oltvai , A.L. Barabasi . Hierarchical organization of modularity in metabolic networks. Science , 1551 - 1555
    193. 193)
      • Faloutsos, M., Faloutsos, P., Faloutsos, C.: `On power-law relationships of the Internet topology’, in', SIGCOMM, 1999.
    194. 194)
      • K. Goh , B. Kahng , D. Kim . Universal behaviour of load distribution in scale-free networks. Phys. Rev. Lett. , 27
    195. 195)
      • A.A. Ioannides , V. Poghosyan , J. Dammers , M. Streit . Real-time neural activity and connectivity in healthy individuals and schizophrenia patients. NeuroImage , 473 - 482
    196. 196)
      • B. Bollobas , O. Riordan . Robustness and vulnerability of scale-free random graphs. Internet Math. , 1 - 35
    197. 197)
    198. 198)
    199. 199)
      • M. Girvan , M. Newman . Community structure in social and biological networks. Proc. Nat. Acad. Sci. , 12 , 7821 - 7826
    200. 200)
    201. 201)
      • E. Ziv , M. Middendorf , C. Wiggins . An information-theoretic approach to network modularity. Phys. Rev. E
    202. 202)
      • P. Bonacich , P. Lloyd . Eigenvector-like measures of centrality for asymmetric relations. Soc Netw. , 191 - 201
    203. 203)
    204. 204)
      • I. Keseler , J. Collado-Vides , S. Gama-Castro . EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. , 1 , D334 - D337
    205. 205)
      • H. Hong , B.J. Kim , M.Y. Choi , H. Park . Factors that predict better synchronizability on complex networks. Phys. Rev. E
    206. 206)
    207. 207)
      • C.H. Schilling , M.W. Covert , I. Famili , G.M. Church , J.S. Edwards , B.O. Palsson . Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. , 4582 - 4593
    208. 208)
      • A. Thomas , R. Cannings , N.A.M. Monk , C. Cannings . On the structure of protein–protein interaction networks. Trans. Biochem. Soc. , 6 , 1491 - 1496
    209. 209)
      • B. Bollobas , O. Riordan , J. Spencer , G. Tusnady . The degree-sequence of a scale-free random graph process. Random Struct. Algorithms , 279 - 290
    210. 210)
      • M. Lappe , L. Holm . Unraveling protein interaction networks with near-optimal efficiency. Nat. Biotechnol. , 1 , 98 - 103
    211. 211)
    212. 212)
      • M.W. Covert , C.H. Schilling , I. Famili . Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. , 3 , 179 - 186
    213. 213)
      • M.W. Hahn , G.C. Conant , A. Wagner . Molecular evolution in large genetic networks: does connectivity equal constraint?. J. Mol. Evol. , 203 - 211
    214. 214)
      • A. Schnitzler , J. Gross . Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. , 285 - 295
    215. 215)
      • W. Wang , S. Ruan . Simulating the SARS outbreak in Beijing with limited data. J. Theor. Biol. , 369 - 379
    216. 216)
      • A. Hirsh , H. Fraser . Reply to communication on protein dispensability and rate of evolution. Nature , 497 - 498
    217. 217)
      • A. Wagner . How the global structure of protein interaction networks evolves. Proc. Roy. Soc. B , 457 - 466
    218. 218)
      • A. Hirsh , H. Fraser . Protein dispensability and rate of evolution. Nature , 1046 - 1049
    219. 219)
      • T. Ito , T. Chiba , R. Ozawa , M. Yoshida , M. Hattori , Y. Sakaki . A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat. Acad. Sci. , 8 , 4569 - 4574
    220. 220)
    221. 221)
      • M.C. Costanzo , J.D. Hogan , M.E. Cusick . The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. , 73 - 76
    222. 222)
      • N.G. Becker , K. Glass , L. Zhengfeng , G.K. Aldis . Controlling emerging infectious diseases like SARS. Math. Biosci. , 205 - 221
    223. 223)
      • E. Alm , A. Arkin . Biological networks. Curr. Opin. Struct. Biol. , 193 - 202
    224. 224)
    225. 225)
      • K.I. Goh , E. Oh , H. Jeong , B. Kahng , D. Kim . Classification of scale-free networks. Proc. Nat. Acad. Sci. , 20 , 12583 - 12588
    226. 226)
    227. 227)
      • Koschutzki, D., Schreiber, F.: `Comparison of centralities for biological networks', German Conf. Bioinformatics, 2004.
    228. 228)
      • E. Estrada . Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics , 35 - 40
    229. 229)
      • F. Chung . (1994) Spectral graph theory.
    230. 230)
      • P.D. Karp , M. Riley , M. Saier . The EcoCyc Database. Nucleic Acids Res. , 1 , 56 - 58
    231. 231)
      • M. Penrose . (2003) Geometric random graphs.
    232. 232)
      • F. Hayot , C. Jayaprakash . A feedforward loop in transcriptional regulation: induction and repression. J. Theor. Biol. , 133 - 143
    233. 233)
      • N. Przulj , D. Corneil , I. Jurisica . Modeling interactome: scale-free or geometric. Bioinformatics , 18 , 3508 - 3515
    234. 234)
      • R. Milo , S. Shen-orr , S. Itzkovitz . Network motifs: simple building blocks of complex networks. Science , 824 - 827
    235. 235)
      • N. Rosenfeld , M. Elowitz , U. Alon . Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. , 785 - 793
    236. 236)
      • F. Chung , L. Lu , T.G. Dewey , D.J. Galas . Duplication models for biological networks. J. Comput. Biol. , 5 , 677 - 687
    237. 237)
      • B. Volgenstein , D. Lane , A.J. Levine . Surfing the p53 network. Nature , 307 - 310
    238. 238)
      • R. Anderson , R. May . (1991) Infectious diseases of humans: dynamics and control.
    239. 239)
      • J. Saramaki , K. Kaski . Modeling development of epidemics with dynamic small-world networks. J. Theor. Biol. , 413 - 421
    240. 240)
      • J. Reed , B. Palsson . Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. , 9 , 2692 - 2699
    241. 241)
    242. 242)
      • F. Harary . (1969) Graph theory.
    243. 243)
      • M.M. Babu , N.M. Luscombe , L. Aravind , M. Gerstein , S.A. Teichmann . Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. , 283 - 291
    244. 244)
      • E. Rodriguez , N. George , J.P. Lachaux , J. Martinerie , B. Renault , F.J. Varela . Perception's shadow: long-distance synchronization of human brain activity. Nature , 430 - 433
    245. 245)
      • E. Estrada . Protein bipartivity and essentiality in the yeast protein–protein interaction network. J. Proteome Res., , 9 , 2177 - 2184
    246. 246)
      • I. Xenarios , D.W. Rice , L. Salwinski , M.K. Baron , E.M. Marcotte , D. Eisenberg . DIP: the database of interacting proteins. Nucleic Acids Res. , 1 , 289 - 291
    247. 247)
    248. 248)
    249. 249)
      • J. Verdasca , M.M.T. da Gama , A. Nunes , N.R. Bernardino , J.M. Pacheco , M.C. Gomes . Recurrent epidemics in small-world networks. J. Theor. Biol. , 553 - 561
    250. 250)
      • D.U. Hwang , S. Boccaletti , Y. Moreno , R. López-Ruiz . Thresholds for epidemic outbreaks in finite scale-free networks. Math. Biosci. Eng. , 2 , 317 - 327
    251. 251)
      • J.A. Acebrón , L.L. Bonilla , C.J. Pérez Vicente , F. Ritort , R. Spigler . The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. , 137 - 185
    252. 252)
      • P. Bork , L.J. Jensen , C. von Mering , A.K. Ramani , I. Lee , E.M. Marcotte . Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. , 292 - 299
    253. 253)
      • T. Nishikawa , A. Motter . Synchronization is optimal in nondiagonalizable networks. Phys. Rev. E
    254. 254)
      • R. Dunn , F. Dudbridge , C. Sanderson . The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinf.
    255. 255)
      • S. Shen-Orr , R. Milo , S. Mangan , U. Alon . Network motifs in the transcriptional regulatory network of Escherichia coli. Nat. Genet. , 64 - 68
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20060038
Loading

Related content

content/journals/10.1049/iet-syb_20060038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address