Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution

Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A printable high-speed thin-film transistor (TFT) fabricated on a regular plastic transparency film is proposed. The carrier transport layer of the TFT is an ultrapure carbon nanotube (CNT) thin film of high density (>1000 CNTs per µm2) formed at room temperature by dispensing a tiny droplet of an electronic-grade CNT solution, which does not contain any surfactant. This CNT–TFT exhibited a high-modulation speed of 312 MHz and a large current-carrying capacity beyond 20 mA. A unique ink-jet printing compatible process demonstrated herein would enable mass production of large-area electronic circuits on any virtually desired flexible substrate at low cost and high throughput.

References

    1. 1)
      • J. Vaillancourt , X. Lu , X. Han , D.C. Janzen . A high-speed thin-film transistor on flexible substrate fabricated at room temperature. Electron. Lett. , 1365 - 1367
    2. 2)
      • A.A. Pesetski , J.E. Baumgardner , E. Folk , J.X. Przybysz , J.D. Adam , H. Zhang . Carbon nanotube field-effect transistor operation at microwave frequencies. Appl. Phys. Lett.
    3. 3)
      • Q. Cao , M. Xia , M. Shim , J.A. Rogers . Bilayer organic–inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv. Funct. Mater. , 2355 - 2362
    4. 4)
      • C.J. Drury , C.M.J. Mutsaers , C.M. Hart , M. Matters , D.M. de Leeuw . Low-cost all-polymer integrated circuits. Appl. Phys. Lett. , 108 - 110
    5. 5)
      • Q. Cao , S. Hur , Z. Zhu , Y. Sun , C. Wang , M.A. Meitl , M. Shim , J.A. Rogers . Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. , 304 - 309
    6. 6)
      • E. Artukovic . Transparent and flexible carbon nanotube transistors. Nano Lett. , 757 - 760
    7. 7)
      • S. Rosenblatt , H. Lin , V. Sazonova , S. Tiwari , P.L. McEuen . Mixing at 50 GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett.
    8. 8)
      • S.J. Tans , A.R.M. Verschueren , C. Dekker . Room temperature transistor based on a single carbon nanotube. Nature , 49 - 52
    9. 9)
      • Y. Zhou , A. Gaur , S. Hur , C. Kocabas , M.A. Meitl , M. Shim , J.A. Rogers . p-channel, n-channel thin film transistors and p–n diodes based on single wall carbon nanotube networks. Nano Lett. , 2031 - 2035
    10. 10)
      • T. Durkop , S.A. Getty , E. Cobas , M.S. Fuhrer . Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. , 35 - 39
    11. 11)
      • S. Hur , M.M. Yoon , M. Gaur , M. Shim , A. Facchetti , T.J. Marks , J.A. Rogers . Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. J. Am. Chem. Soc. , 13808 - 13809
    12. 12)
      • H. Sirringhaus , T. Kawase , R.H. Friend , T. Shimoda , M. Inbasekaran , W. Wu , E.P. Woo . High-resolution inkjet printing of all-polymer transistor circuits. Science , 2123 - 2126
    13. 13)
      • S. Li , Z. Yu , S. Yen , W.C. Tang , P.J. Burke . Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. , 753 - 756
    14. 14)
      • E.S. Snow , P.M. Campbell , M.G. Ancona , J.P. Novak . High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett.
    15. 15)
      • P. Nikolaev , M.J. Bronikowski , R.K. Bradley , F. Rohmund , D.T. Colbert , K.A. Smith , R.E. Smalley . Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. , 91 - 97
    16. 16)
      • D.R. Hines , S. Mezhenny , M. Breban , E.D. Williams , V.W. Ballarotto , G. Esen , A. Southard , M.S. Fuhrer . Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett.
    17. 17)
      • F. Garnier . All-polymer field-effect transistor realized by printing techniques. Science , 1684 - 1686
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl_20070033
Loading

Related content

content/journals/10.1049/mnl_20070033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address