Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks

SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

SmartCell has been developed to be a general framework for modelling and simulation of diffusion-reaction networks in a whole-cell context. It supports localisation and diffusion by using a mesoscopic stochastic reaction model. The SmartCell package can handle any cell geometry, considers different cell compartments, allows localisation of species, supports DNA transcription and translation, membrane diffusion and multistep reactions, as well as cell growth. Moreover, different temporal and spatial constraints can be applied to the model. A GUI interface that facilitates model making is also available. In this work we discuss limitations and advantages arising from the approach used in SmartCell and determine the impact of localisation on the behaviour of simple well-defined networks, previously analysed with differential equations. Our results show that this factor might play an important role in the response of networks and cannot be neglected in cell simulations.

References

    1. 1)
      • C.V. Rao , D.M. Wolf , A.P. Arkin . Control, exploitation and tolerance of intracellular noise. Nature , 231 - 237
    2. 2)
      • http://sahara.lbl.gov/ ∼sandrews/software/Smoldyn_doc.pdf.
    3. 3)
      • N. van Kampen . (2001) Stochastic processes in physics and chemistry.
    4. 4)
      • M.B. Elowitz . Protein mobility in the cytoplasm of Escherichia Coli. J. Bacteriol. , 197 - 203
    5. 5)
      • http://www.apache.org.
    6. 6)
      • T.M. Bartol . MCell: generalized Monte Carlo computer simulation of synaptic transmission and chemical signaling. Soc. Neurochem. Abst.
    7. 7)
      • J. Elf . Mesoscopic reaction-diffusion in intracellular signaling. SPIE–Glass , 114 - 124
    8. 8)
      • D.T. Gillespie . Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. , 1716 - 1733
    9. 9)
      • J. Elf , M. Ehrenberg . Fast evaluation of fluctuations in biochemical networks with linear noise approximation. Genome Research , 2475 - 2479
    10. 10)
      • H.M. Sauro . Next generation simulation tools: the systems biology workbench and BioSPICE integration. OMICS , 335 - 372
    11. 11)
      • P. Dhar . Cellware – a multi-algorithmic software for computational systems biology. Bioinformatics
    12. 12)
      • C. Tanford . (1961) Physical Chemistry of macromolecules.
    13. 13)
      • A. Arkin . Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics , 1633 - 1644
    14. 14)
      • L. Shapiro , R. Losick . Dynamic Spatial Regulation in the Bacterial Cell. Cell , 89 - 98
    15. 15)
      • D.T. Gillespie . A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. , 403 - 434
    16. 16)
      • N. Le Novere , T.S. Shimizu . StochSim: modelling stochastic biomolecular processes. Bioinformatics , 575 - 576
    17. 17)
      • J. Lutkenhaus , S.G. Addinall . Bacterial cell division and the Z ring. Annu. Rev. Biochem. , 93 - 116
    18. 18)
      • D.T. Gillespie , L.R. Petzold . Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. , 8229 - 8234
    19. 19)
      • J.R. Wenner , J.R. Bloomfield . Crowding Effects on EcoRV Kinetics and Binding. Biophys. Journal , 3234 - 3241
    20. 20)
      • http://www.ibg.uu.se/upload/Maria_A.pdf; http://www.ibg.uu.se/upload/01044.pdf.
    21. 21)
      • D. Garfinkel . Computer modelling of metabolic pathways. TiBS , 69 - 71
    22. 22)
      • L.M. Loew , J.C. Schaff . The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. , 401 - 406
    23. 23)
      • A.B. Stundzia , C.J. Lumsden . Stochastic simulation of coupled reaction-diffusion processes. J. Comput. Phys. , 196 - 207
    24. 24)
      • H. McAdams , A. Arkin . Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA , 814 - 819
    25. 25)
      • M. Tomita . E-Cell: software environment for whole-cell simulation. Bioinformatics , 72 - 84
    26. 26)
      • M. Hucka , A. Finney , H.M. Sauro , H. Bolouri , J.C. Doyle , H. Kitano . The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics , 524 - 531
    27. 27)
      • M.A. Gibson , J. Bruck . Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J. Phys. Chem. , 1876 - 1889
    28. 28)
      • A.M. Kierzek . STOCKS: Stochastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics , 470 - 481
    29. 29)
      • K. Tahashi . Computational challenges in Cell simulation: a software engineering approach. IEEE Intell. Syst. , 64 - 71
    30. 30)
      • B.M. Slepchenco . Computational cell biology: spatiotemporal simulations of cellular events. Annu. Rev. Biophys. Biomol. Struct. , 423 - 441
    31. 31)
      • J.T. Tyson . Sniffers, buzzers, toggles and blinkers: dynamics of regulator and signaling pathways in the cell. Curr. Opin. Cell Biol. , 221 - 231
    32. 32)
      • J. Paulsson . Summing up the noise in gene networks. Nature , 415 - 418
    33. 33)
      • D.T. Gilespie . Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. , 2340 - 2361
    34. 34)
      • http://sbml.org.
    35. 35)
      • L. You . Modelling biological systems using Dynetica – a simulator of dynamic networks. Bioinformatics , 435 - 436
    36. 36)
      • A. Fersht . (1985) Enzyme structure and mechanism.
    37. 37)
      • M.P. Allen , D.J. Tildesley . (1989) Computer simulations of liquids.
    38. 38)
      • http://www.biologie.uni-hamburg.de/b-online/library/genomeweb/GenomeWeb/prokaryote-gen-db.html.
    39. 39)
      • H.H. McDams , A. Arkin . It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet , 65 - 69
    40. 40)
      • M. Hucka . The ERATO systems biology workbench: enabling interaction and exchange between software tools for computational biology. Pac. Symp. Biocomput. , 450 - 461
    41. 41)
      • T.C. Meng . Modeling and simulation of Biological Systems with stochasticity. In Silico. Biol. , 2
    42. 42)
      • J. Kastner . Modeling a Hox gene network in silico using a stochastic simulation algorithm. Developmental Biology , 122 - 131
http://iet.metastore.ingenta.com/content/journals/10.1049/sb_20045017
Loading

Related content

content/journals/10.1049/sb_20045017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address