Skip to main content

Advertisement

Log in

Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Ecosystems have an essential role in providing services to humankind such as nutrient cycling, pest control, pollination, quality of life, and hydrological, atmospheric and climatic regulation. About 60% of the world’s known ecosystems are currently used unsustainably. In Europe, the richness and abundance of biodiversity is undergoing significant decline, partly due to climate change. This article outlines the impacts of climate change on biodiversity by showing both observed and projected changes in the distribution and phenology of plants and animals (phenology refers to changes in the timing of seasonal events). The four major findings are the following. (1) Concerning the distribution of plant species, climate change is responsible for the observed northward and uphill distribution shifts of many European plant species. By the late 21st century, distributions of European plant species are projected to have shifted several hundred kilometres to the north, forests are likely to have contracted in the south and expanded in the north, and 60% of mountain plant species may face extinction. The rate of change will exceed the ability of many species to adapt. (2) Concerning plant phenology, the timing of seasonal events in plants is changing across Europe due to changes in climate conditions. For instance, 78% of leaf unfolding and flowering records show advancing trends. Between 1971 and 2000, the average advance of spring and summer was 2.5 days per decade. The pollen season starts on average 10 days earlier and is longer than 50 years ago. Trends in seasonal events will continue to advance as climate warming increases in the years and decades to come. (3) Concerning the distribution of animal species, Europe’s birds, insects, and mammals are moving northwards and uphill in response to observed climate change. Rate of climate change, habitat fragmentation and other obstacles will impede the movement of many animal species. Distribution changes are projected to continue. Suitable climatic conditions for Europe’s breeding birds are projected to shift nearly 550 km northeast by the end of the century. Projections for 120 native European mammals suggest that up to 9% face extinction during the 21st century. (4) Concerning animal phenology, climatic warming has caused advancement in the life cycles of many animal groups, including frogs spawning, birds nesting and the arrival of migrant birds and butterflies. Seasonal advancement is particularly strong and rapid in the Arctic. Breeding seasons are lengthening, allowing extra generations of temperature-sensitive insects such as butterflies, dragonflies and pest species to be produced during the year. These trends are projected to continue as climate warming increases in the decades to come. Populations may explode if the young are not exposed to normal predation pressures. Conversely, populations may crash if the emergence of vulnerable young is not in synchrony with their main food source or if shorter hibernation times lead to declines in body condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araújo M.B., Luoto M. (2007) The importance of biotic interactions for modelling species distributions under climate change, Global Ecol. Biogeogr. 16, 743–753.

    Article  Google Scholar 

  • Araújo M.B., Thuiller W., Pearson R.G. (2006) Climate warming and the decline of amphibians and reptiles in Europe, J. Biogeogr. 33, 1712–1728.

    Article  Google Scholar 

  • Bakkenes M., Eickhout B., Alkemade R. (2006) Impacts of different climate stabilisation scenarios on plants species in Europe, Global Environ. Chang. 16, 19–28.

    Article  Google Scholar 

  • Bakkenes M. (2007) Produced for the EEA by Netherlands Environmental Assessment Agency (PBL), based on data of the ALARM project (http://www.alarmproject.net.ufz.de).

  • Bale J.S. Masters G.J., Hodkinson I.D., et al. (2002) Herbivory in global climate change research: direct effects of rising temperatures on insect herbivores, Global Change Biol. 8, 1–16.

    Article  Google Scholar 

  • Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Both C., Marvelde L. (2007) Climate change and timing of avian breeding and migration throughout Europe, Climate Res. 35, 93–105.

    Article  Google Scholar 

  • Both C., Bouwhuis S., Lessells C.M., Visser M.E. (2006) Climate change and population declines in a long-distance migratory bird, Nature 441, 81–83.

    Article  PubMed  CAS  Google Scholar 

  • Cannon R.J.C. (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species, Global Change Biol. 4, 785–796.

    Article  Google Scholar 

  • CEH, Morton Frederiksen (2005) Cited in ‘A warm unwelcome’, by Audrey Schulman. http://www.grist.org/news/maindish/2005/01/25/schulmanseabirds/.

  • Crick H.Q.P., Sparks T.H. (1999) Climate change related to egg-laying trends, Nature 399, 423–424.

    Article  CAS  Google Scholar 

  • DEFRA (2007) Conserving biodiversity in a changing climate: guidance on building capacity to adapt. DEFRA, UK.

    Google Scholar 

  • Díaz S., Fargione J., Stuart Chapin III F., Tilman D. (2006) Biodiversity loss threatens human well-being, PLoS Biology 4 (8), e277. DOI: 10.1371/journal.pbio.0040277.

    Article  PubMed  Google Scholar 

  • Fitter A.H., Fitter R.S.R. (2002) Rapid Changes in Flowering Time in British Plants, Science 296, 1689–1691.

    Article  PubMed  CAS  Google Scholar 

  • Gitay H., Suarez A., Watson R.T., Dokken D.J. (2002) Climate change and biodiversity; IPCC Technical paper 5, April 2002, 77 p.

  • Gregory R.D., Willis S.G., Jiguet F., Voøíšek P., Klvaòová A., van Strien A., Huntley B., Collingham Y.C., Couvet D., Green R.E. (2008) An indicator of the impact of climatic change on European bird populations (in press).

  • Hickling R., Roy D.B., Hill J.K., Fox R., Thomas C.D. (2006) The distributions of a wide range of taxonomic groups are expanding polewards, Global Change Biol. 12, 450–455.

    Article  Google Scholar 

  • Høye T.T., Post E., Meltofte H., Schmidt N.M., Forchhammer M.C. (2007) Rapid advancement of spring in the high Arctic, Curr. Biol. 17, 449–451.

    Article  Google Scholar 

  • Huntley B. (2007) Climatic change and the conservation of European biodiversity: Towards the development of adaptation strategies. Bern Convention Standing Committee on Climate Change. Council of Europe, Strasbourg.

    Google Scholar 

  • Huntley B. et al. (2008) A Climatic Atlas of European Breeding Birds, Lynx Edicions, Barcelona.

    Google Scholar 

  • IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (Eds.), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kullman L. (2006) Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden, Nordic J. Bot. 24, 445–467. Copenhagen.

    Article  Google Scholar 

  • Kullman L. (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology, J. Ecol. 95, 41–52.

    Article  Google Scholar 

  • Lemoine N., Schaefer H.C., Böhning-Gaese K. (2007) Species richness of migratory birds is influenced by global climate change, Global Ecol. Biogeogr. 16, 55–64.

    Article  Google Scholar 

  • Levinsky I., Skov F., Svenning J., Rahbek C. (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals, Biodivers. Conserv. 16, 3803–3816.

    Article  Google Scholar 

  • Lovejoy T., Hannah L. (2005) Climate change and biodiversity, Yale University Press, London, UK.

    Google Scholar 

  • McKinney M.L., Lockwood J.L. (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction, Trends Ecol. Evol. 14, 450–453.

    Article  PubMed  Google Scholar 

  • Menzel A., Sparks T.H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kübler K., Bissolli P., Braslavská O., Briede A., Chmielewski F.M., Crepinsek Z., Curnel Y., Dahl Å., Defila C., Donelly A., Filella I., Jatczak K., Måge F., Mestre A., Nordli Ø., Peñuela J., Pirinen P., Remišová V., Scheinfinger H., Støíž M., Susnik A., Van Vliet A.J.H., Wiegolaski F.-E., Zach S., Zust A. (2006) European phenological response to climate change matches the warming pattern, Global Change Biol. 12, 1969–1976.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) www.millenniumassessment.org.

  • Nature’s Calendar, UK. www.naturescalendar.org.uk/climate+change/past.htm.

  • Nordic Council (2005) Conservation of Nordic Nature in a Changing Climate. Nordic Council of Ministers, Copenhagen.

    Google Scholar 

  • Ott J. (2007) The expansion of Crocothemis erythraea (Brullé, 1832) in Germany — an indicator of climatic changes. Odonata: Biology of Dragonflies, in: Tyagi B.K. (Ed.), Scientific Publishers (India), pp. 201–222.

  • Parmesan C., Yohe G. (2003) A globally coherent fingerprint of climate change impacts across natural systems, Nature 421, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C., Ryrholm N., Stefanescu C., Hill J.K., Thomas C.D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T., Tennent W.J., Thomas J.A., Warren M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming, Nature 399, 579–83.

    Article  CAS  Google Scholar 

  • Pauli H., Gottfried M., Reiter K., Klettner C., Grabherr G. (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria, Global Change Biol. 13, 147–156.

    Article  Google Scholar 

  • Reading C.J. (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship, Oecologia 151, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Reid W.V. et al. (2005) Ecosystems and human well-being: Synthesis, and Policy Responses, Island Press, Washington, DC.

    Google Scholar 

  • Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C., Pounds J.A. (2003) Fingerprints of global warming on wild animals and plants, Nature 421, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger O., Settele J., Kudrna O., Klotz S., Kühn I. (2008) Climate change can cause spatial mismatch of trophically interacting species, Ecology (in press).

  • Settele J., Hammen V.C., Hulme P.E., Karlson U., Klotz S., Kotarac M., Kunin W.E., Marion G., O’Connor M., Petanidou T., Peterson K., Potts S.G., Pritchard H., Pysek P., Rounsevell M., Spangenberg J., Steffan-Dewenter I., Sykes M.T., Vighi M., Zobel M., Kuhn I. (2005) ALARM: Assessing large scale risks for biodiversity with tested methods. GAIA — Ecological Perspectives in Science, Human. Econom. 14, 96–72.

    Google Scholar 

  • Sobrino Vesperinas E., González Moreno A., Sanz Elorza M., Dana Sánchez E., Sánchez Mata D., Gavilán R. (2001) The expansion of thermophilic plants in the Iberian Peninsula as a sign of climatic change. ‘Fingerprints’ of climate change — adapted behaviour and shifting species ranges, in: Walther G.-R., Burga C.A., Edwards P.J. (Eds.), pp. 163–184, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Spangenberg J.H. (2007) Integrated scenarios for assessing biodiversity risks, Sustain. Dev. 15 (6), 343–356.

    Article  Google Scholar 

  • Sparks T.H., Dennis R.L.H., Croxton P.J., Cade M. (2007) Increased migration of Lepidoptera linked to climate change, Eur. J. Entomol. 104, 139–143.

    Google Scholar 

  • Thuiller W., Lavorel S., Araújo M.B., Sykesand M.T., Prentice I.C. (2005) Climate change threatens plant diversity in Europe, Proc. Nat. Acad. Sci. USA 102, 8245–8250.

    Article  PubMed  CAS  Google Scholar 

  • UKCIP (2005) UK Climate Impacts Programme. http://www.ukcip.org.uk.

  • van Vliet A. (2008) Monitoring, analysing, forecasting and communicating phenological changes, Ph.D. thesis, University of Wageningen, the Netherlands.

    Google Scholar 

  • Walther G.-R., Beissner S., Burga C.A. (2005) Trends in the uphill shift of alpine plants, J. Veg. Sci. 16, 541–548.

    Article  Google Scholar 

  • Walther G.-R., Berger S., Sykes M.T. (2005) An ecological ‘footprint’ of climate change, Proc. R. Soc. Lond. B 272, 1427–1432.

    Article  Google Scholar 

  • Warren M.S., Hill J.K., Thomas J.A., Asher J., Fox R., Huntley B., Roy D.B., Telfer M.G., Jeffcoate S., Harding P., Jeffcoate G., Willis S.G., Greatorex-Davies J.N., Moss D., Thomas C.D. (2001) Rapid response of British butterflies to opposing forces of climate and habitat change, Nature 414, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Wilson R.J., Gutierrez D., Gutierrez J., Martinez D., Agudo R., Monserrat V.J. (2005) Changes to the elevational limits and extent of species ranges associated with climate change, Ecol. Lett. 8, 1138–1146.

    Article  PubMed  Google Scholar 

  • Yamamura K., Kiritani K. (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones, Appl. Entomol. Zool. 33, 289–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Feehan.

Additional information

Reprinted with kind permission of Ove Caspersen, Project Manager, Marketing, licensing and exhibitions, European Environment Agency, Copenhagen, Denmark. From the report entitled Impacts of Europe’s changing climate — 2008 indicator-based assessment. EEA report No. 4/2008. JRC reference report No. JRC47756. ISBN 978-92-9167-372-8. DOI 10.2800/48117. http://reports.eea.europa.eu/eea_report_2008_4/en.

About this article

Cite this article

Feehan, J., Harley, M. & van Minnen, J. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agron. Sustain. Dev. 29, 409–421 (2009). https://doi.org/10.1051/agro:2008066

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2008066

Navigation