Skip to main content
Log in

Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Traditional morphometrics, allozymes, and mitochondrial data have supported a close relationship between the M branch subspecies A. m. iberiensis and the North African subspecies (A branch). However, studies using nuclear DNA markers have revealed a clear distinction between the latter and the two European M branch subspecies. In help resolve this paradox, we analyzed 663 colonies from six European and African subspecies. A geometric morphometrics approach was applied to the analysis of wing shape, and the results were compared with data of six microsatellite loci. Both data sets were found to be highly consistent and corroborated a marked divergence of West European subspecies from North African ones. This supports the hypothesis that the presence of the African lineage mitotype in Iberian honey bee populations is likely the consequence of secondary introductions, with a minimal African influence within the current Iberian genetic background. Wing geometric morphometrics appears more appropriate than mitochondrial DNA analysis or traditional morphometrics in the screening and identification of the Africanization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D.C., Rohlf F.J., Slice D.E. (2004) Geometric morphometrics: ten years of progress following the revolution, Ital. J. Zool. 71, 5–16.

    Article  Google Scholar 

  • Arias M.C., Sheppard W.S. (1996) Molecular phylogenetics of honey bee subespecies (Apis mellifera), Mol. Phylogenet. Evol. 5, 557–566.

    Article  PubMed  CAS  Google Scholar 

  • Arias M.C., Rinderer T.E., Sheppard W.S. (2006) Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses, J. Apic. Res. 45, 188–196.

    Article  CAS  Google Scholar 

  • Baylac M., Daufresne T. (1996) Wing venation variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the quaternary coevolution of box (Buxus sempervirens L.) and its midge: A GeometricalMorphometric Analysis, in: Advances in Morphometrics, NATO-ASI Series A, Plenum Press, pp. 285–301.

  • Baylac M., Friess M. (2005) Fourier descriptors, Procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations, in: Slice D.E. (Ed.), Modern Morphometrics in Physical Anthropology, Kluwer, pp. 145–165.

  • Baylac M., Penin X. (1998) Wing static allometry in Drosophila simulans males (Diptera, Drosophilidae) and its relationships with developmental compartments, Acta Zool. 44, 97–112.

    Google Scholar 

  • Baylac M., Garnery L., Tharavy D., Pedraza-Acosta J., Rortais A., Arnold G. (2008) ApiClass, an automatic wing morphometric expert system for honeybee identification, [online] http://apiclass.mnhn.fr.

  • Baylac M., Villemant C., Simbolotti G. (2003) Combining Geometric Morphometrics with Pattern Recognition for the investigation of Species Complexes, Biol. J. Linn. Soc. 80, 89–98.

    Article  Google Scholar 

  • Bonnet E., Van de Peer Y. (2002) ZT: a software tool for simple and partialMantel tests, J. S. S. 7, 1–12.

    Google Scholar 

  • Bookstein F. (1991) Morphometric tools for landmark data: geometry and biology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bookstein F.L., Chernoff B., Elder R.L., Humphries J.M., Smith G.R., Strauss R.E. (1985) Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes, Academy of Natural Sciences of Philadelphia, No. 15.

  • Canovas F., De la Rua P., Serrano J., Galian J. (2007) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae), J. Zool. Syst. Evol. Res. 46, 24–30.

    Google Scholar 

  • Cornuet J.M., Fresnaye J. (1989) Etude biométrique de colonies d’abeilles d’Espagne et du Portugal, Apidologie 20, 93–101.

    Article  Google Scholar 

  • Darroch J.N., Mosimann J.E. (1985) Canonical and principal components of shape, Biometrika 72, 241–252.

    Article  Google Scholar 

  • Diniz-Filho J.A., Fuchs S., Arias M.C. (1999) Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.), Heredity 83, 671–680.

    Article  PubMed  Google Scholar 

  • Dryden I.L., Mardia K.V. (1998) Statistical shape analysis, John Wiley & Sons.

  • Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera) populations:hierarchical genetic structure and test of infinitemodels, Genetics 140, 679–695.

    PubMed  CAS  Google Scholar 

  • Evin A., Baylac M., Ruedi M., Mucceda M., Pons J.P. (2008) Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal, Biol. J. Linn. Soc. 95, 529–538.

    Article  Google Scholar 

  • Franck P., Garnery L., Solignac M., Cornuet J.M. (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data, Evolution 52, 1119–1134.

    Article  CAS  Google Scholar 

  • Franck P., Garnery L., Solignac M., Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from Near East, Apidologie 31, 167–180.

    Article  CAS  Google Scholar 

  • Franck P., Garnery L., Loiseau A., Oldfroyd B.P., Hepburn H.R., Solignac M., Cornuet J.M. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Francoy T.M., Prado P.R.R., Gonçalves L.S., da Fontoura Costa L., De Jong D. (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types, Apidologie 37, 91–97.

    Article  Google Scholar 

  • Francoy T.M., Wittmann D., Drauschke M., Müller S., Steinhage V., Bezerra-Laure M.A.F., De Jong D., Concalves, L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures, Apidologie 39, 488–494.

    Article  Google Scholar 

  • Francoy T.M., Wittmann D., Steinhage V., Drauschke M., Müller M., Cunha D.R., Nascimento A.M., Figueiredo V.L.C., Simoes Z.L.P., De Jong D., Arias M.C., Gonçalves L.S. (2009) Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization, Genet. Mol. Res. 8, 709–717.

    Article  PubMed  CAS  Google Scholar 

  • Garnery L., Cornuet J.M., Solignac M. (1992) Evolutionary history of the honey bee (Apis mellifera L.) inferred from mitochondrial DNA analysis, Mol. Ecol. 1, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998a) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA, Genet. Sel. Evol. 30, S31–S47.

    Article  CAS  Google Scholar 

  • Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998b) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, S49–S74.

    Article  CAS  Google Scholar 

  • Garnery L., Mosshine E.H., Oldroyd B.P., Cornuet J.M. (1995) Mitochondrial DNA variation in Moroccan and Spanish honey bee populations, Mol. Ecol. 4, 465–471.

    Article  CAS  Google Scholar 

  • Gould S.J. (1966) Allometry and size in ontogeny and phylogeny, Biol. Rev. 41, 587–640.

    Article  PubMed  CAS  Google Scholar 

  • Hamon L.J., Gibson, R. (2006) Multivariate phenotypic evolution among island and mainland populations of the ornate day gecko, Phelsuma ornata, Evolution 60, 2622–2632.

    Google Scholar 

  • Hepburn H.R., Radlof S.E. (1996) Morphometric and pheromonal analysis of Apis mellifera L. along a transect from the Sahara to the Pyrenees, Apidologie 27, 35–45.

    Article  CAS  Google Scholar 

  • Hepburn H.R., Radloff S.E. (1998) Honeybee of Africa, Springer, Berlin.

    Google Scholar 

  • Klingenberg C.P., Badyaev A.V., Sowry S.M., Beckwith N.J. (2001) Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings, Am. Nat. 157, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Langella O. (2002) Populations, 1.2.28, Copyright (C) 1999, CNRS UPR9034.

  • Lobo J.A., Krieger H. (1992) Maximum likelihood estimates of gene frequencies and racial admixture in Apis mellifera L. (Africanized honeybees), Heredity 68, 441–448.

    Google Scholar 

  • Mahalanobis P.C. (1936) On the generalized distance in statistics, Proc. Acad. Natl. Sci. 12, 49–55.

    Google Scholar 

  • Marroig G., Cheverud J. (2004) Cranial evolution in sakis (Pithecia, Platyrrhini) I: Interspecific differentiation and allometric patterns, Am. J. Phys. Anthropol. 125, 266–278.

    Article  PubMed  Google Scholar 

  • Mattu V.K., Verma L.R. (1983) Comparative morphometric studies on the Indian honeybee of the North-west Himalaya 1. Tongue and Antenna, J. Apic. Res. 22, 79–85.

    Google Scholar 

  • Meixner M., Ruttner F., Koeniger N., Koeniger G. (1989) The mountain bees of the Kilimanjaro region and their relation to neighboring bee populations, Apidologie 20, 165–174.

    Article  Google Scholar 

  • Meixner M., Sheppard W.S., Dietz A., Krell R. (1994) Morphological and allozyme variability in honey bees from Kenya, Apidologie 25, 188–202.

    Article  Google Scholar 

  • Miguel I., Iriondo M., Garnery L., Sheppard W.S., Estonba A. (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post glacial re-colonization routes in the western Europe, Apidologie 38, 141–155.

    Article  CAS  Google Scholar 

  • Monteiro L.R. (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape, Syst. Biol. 48, 192–199.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro, L.R., Bordin B., DosReis S.F. (2000) Shape distances, shape spaces and the comparison of morphometric methods, TREE 15, 217–220.

    PubMed  Google Scholar 

  • Monteiro L.R., Diniz-Filho J.A.F. dos Reis S.F., Araújo E. (2002) Geometric Estimates of Heritability in Biological Shape, Evolution 56, 563–572.

    PubMed  Google Scholar 

  • Mosimann J.E., James F.C. (1979) New statistical methods for allometry with application to Florida red-winged blackbirds, Evolution 33, 444–459.

    Article  Google Scholar 

  • Neff N.A., Smith G.R. (1979) Multivariate Analysis of Hybrid Fishes, Syst. Zool. 28, 176–196.

    Article  Google Scholar 

  • Nei M., Tajima F., Tateno Y. (1983) Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol. 19, 153–170.

    Article  PubMed  CAS  Google Scholar 

  • Piry S., Alapetite A., Cornuet, J.M., Paetkau D., Baudouin L., Estoup A. (2004) GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered. 95, 536–539.

    Article  PubMed  CAS  Google Scholar 

  • Pretorius E. (2005) Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera — a case study based on the genus Tachyphex Kohl (Hymenoptra: Sphecidae: Larrinae), Aust. J. Entomol. 44, 113–121.

    Article  Google Scholar 

  • Rannala B., Mountain J.L. (1997) Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. 94, 9197–9221.

    Article  PubMed  CAS  Google Scholar 

  • Ripley B.D. (1996) Pattern recognition and neural networks, Cambridge University Press, Cambridge, G.B.

    Google Scholar 

  • Roberts W.C. (1961) Heterosis in the Honey bee as shown by morphological characters in inbred and hybrid bees, Ann. Entomol. Soc. Am. 54, 878–882.

    Google Scholar 

  • Rohlf F.J. (1999) Shape Statistics: Procrustes superimposition and tangent spaces, J. Classif. 16, 197–223.

    Article  Google Scholar 

  • Rohlf F.J., Slice D. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool. 39, 40–59.

    Article  Google Scholar 

  • Ruttner F. (1988) Biogeography and taxonomy of honeybees, Springer Verlag, Berlin.

    Google Scholar 

  • Ruttner F., Tassencourt L., Louveaux J. (1978) Biometrical-statistical analysis of the geographic variability of Apis mellifera L., Apidologie 9, 363–381.

    Article  Google Scholar 

  • Ruttner F., Pour-Elmi M., Fuchs S. (2000) Ecoclines in the Near East along 36°N latitude in Apis mellifera L., Apidologie 31, 157–166.

    Article  Google Scholar 

  • Sheppard W.S., Arias M.C., Grech A., Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie 28, 287–293.

    Article  Google Scholar 

  • Smith D.R., Crespi B.J., Bookstein F.L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effect of ploidy and hybridization, J. Evol. Biol. 10, 551–574.

    Article  Google Scholar 

  • Smith D.R, Glenn T.C. (1995) Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica), J. Hered. 86, 12–16.

    PubMed  CAS  Google Scholar 

  • Smith D.R., Palopoli M.F., Taylor B.R., Garnery L., Cornuet J.M., Solignac M., Brown W.M. (1991) Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica), J. Hered. 82, 96–100.

    PubMed  CAS  Google Scholar 

  • Sprent P. (1972) The mathematics of size and shape, Biometrics 28, 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Tofilski A. (2008) Using geometric morphometrics and standard morphometrics to discriminate three honeybee subspecies, Apidologie 39, 558–563.

    Article  Google Scholar 

  • Updegraff G. (1990) MeasurementTV, version 1.3. Data Crunch 304 avenue Adobe, Dan Clemente, CA 92672, USA.

    Google Scholar 

  • Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 27, 642–645.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irati Miguel.

Additional information

Manuscript editor: Marina Meixner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, I., Baylac, M., Iriondo, M. et al. Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie 42, 150–161 (2011). https://doi.org/10.1051/apido/2010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2010048

Keywords

Navigation