Skip to main content
  • Original Article
  • Published:

Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for Douglas fir (Pseudotsuga menziesii) and spruce (Picea abies)

Mesure du retrait libre à l’échelle des tissus à l’aide d’un microscope optique muni d’un objectif à immersion: résultats obtenus chez le Douglas (Pseudotsuga menziesii) et l’épicéa (Picea abies)

Abstract

Shrinkage at the tissue level has been evaluated satisfactorily using relatively simple equipment, comprising an optical microscope equipped with reflected light, a standard objective, a water immersion objective of same magnification and a digital camera connected to a computer. Shrinkage is calculated from pairs of images taken at the same magnification, one collected during immersion in water and the other in air-dry state. A novel software program has been developed to determine shrinkage based on a closed chain of reference points chosen from the anatomical markers at the external part of the zone of interest. Measurements were performed on earlywood, latewood and compression wood zones from two softwood species (Douglas fir and spruce), isolated from the rest of the annual ring with the aid of a diamond wire saw. As main results, reference should be made to the low degree of shrinkage and high anisotropy factor of earlywood, the marked and practically isotropic shrinkage in latewood and the low shrinkage (with respect to cell wall thickness) and inverse anisotropy ratio in compression wood.

Résumé

Le retrait a été évalué de façon satisfaisante à l’échelle tissulaire en utilisant un équipement relativement simple : un microscope optique, un objectif standard, un objectif à immersion de même grossissement et une caméra digitale reliée à un ordinateur personnel. Le retrait est déterminé par comparaison de deux images : l’une obtenue en immersion dans l’eau et l’autre à l’état sec à l’air. Un logiciel nouveau a été développé pour extraire le retrait à partir d’une chaîne fermée de points situés à la périphérie de la zone d’intérêt. Les mesures ont été effectuées sur des zones de bois initial, de bois de compression et de bois final de deux espèces (Douglas et sapin). Ces zones sont isolées du reste de l’accroissement initial à l’aide d’une scie à fil diamanté. Les principaux résultats montrent le faible niveau de retrait et la forte anisotropie du bois initial, le fort retrait, presque isotrope, du bois final et la faible valeur, en rapport à sa densité, avec une anisotropie inversée, du bois de compression.

References

  1. Badel E., Perré P., Using a digital X-ray imaging device to measure the swelling coefficients of a group of wood cells, NDT&E International 34 (2001) 345–353.

    Article  CAS  Google Scholar 

  2. Barkas W., Wood water relationships, VI. The influence of ray cells on the shrinkage of wood, Trans. Faraday Soc. 37 (1941) 535–547.

    Article  CAS  Google Scholar 

  3. Bosshard H.H., Holzkunde, Band 2: Zur Biologie, Physik und Chemie des Holzes, Birkhäuser, Basel, 1984.

    Google Scholar 

  4. Botosso P., Une méthode de mesure du retrait microscopique du bois : Application à la prédiction du retrait tangentiel d’éprouvettes de bois massif de sapin pectiné (Abies alba Mill.), Thèse, Université Nancy I, 1997.

  5. Boutelje J., The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity, Svensk papperstidning 65 (1962) 209–215.

    CAS  Google Scholar 

  6. Boutelje J., On shrinkage and change in microscopic void volume during drying, as calculated from measurements on microtome cross sections of Swedish pine, Holzforshung 65 (1962) 209–215.

    CAS  Google Scholar 

  7. Boutelje J., The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity, Svensk papperstidning 75 (1972) 1–6.

    Google Scholar 

  8. Farruggia F., Perré P., Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce, Wood Sci. Tech. 34 (2000) 65–82.

    Article  CAS  Google Scholar 

  9. Gibson L.J., Ashby M.F, Cellular solids: structure and properties, Pergamon Press, 1988.

  10. Ivkovica M., Rozenberg P., A method for describing and modelling of within-ring wood density distribution in clones of three coniferous species, Ann. For. Sci. 61 (2004) 759–769.

    Article  Google Scholar 

  11. Kawamura Y., Studies on the properties of rays III. Influence of rays on anisotropic shrinkage of wood, Mokuzai Gakkaishi, 30 (1984) 785–790.

    Google Scholar 

  12. Kelsey K., A critical review of the relationship between the shrinkage and structure of wood, Division of Forest products technological paper No. 28, CSIRO, Melbourne, 1963.

    Google Scholar 

  13. Kollmann F.P., Cote W.A., Principles of wood science and technology, Vol. 1, Solid wood, Springer-Verlag, 1968.

  14. Mariaux A., La section transversale de fibre observée avant et après séchage sur bois massif, Bois Forêts Trop. 221 (1989) 65–76.

    Google Scholar 

  15. Mazet J.F., Nepveu G., Relations entre caractéristiques de retrait et densité du bois chez le pin sylvestre, le sapin pectiné et l’épicéa commun, Ann. Sci. For., 48 (1991) 87–100.

    Article  Google Scholar 

  16. Mikajiri N., Matsumura J., Okuma M., Observations by LV-SEM of shrinkage and anisotropy of tracheid cells with desorption, Mokuzai Gakkaishi, 47 (2001) 289–294.

    CAS  Google Scholar 

  17. Park Y.I., Dallaire G., Morin H., A method for multiple intra-ring demarcation of coniferous trees, Ann. For. Sci. 63 (2006) 9–14.

    Article  Google Scholar 

  18. Perré P., MeshPore: a software able to apply image-based meshing techniques to anisotropic and heterogeneous porous media, Drying technology, 23 (2005) 1993–2006.

    Article  Google Scholar 

  19. Perré P., Wood as a multi-scale porous medium: Observation, experiment, and modelling, Proceedings of the First International conference of the European Society for wood mechanics, 2002, EPFL, Lausanne, Switzerland, pp. 365–384.

    Google Scholar 

  20. Quirk J.T., Shrinkage and related propertied of Douglas-fir cell walls, Wood Fiber Sci. 16 (1982) 115–133.

    Google Scholar 

  21. Roboty Onwondault, O., Détermination du retrait radial et tangentiel d’un groupe de cellules homogène par microscopie optique: validation de la méthode sur le chêne et application au Burkéa africana, DEA Sciences du bois, LERMaB, Nancy, 2002.

    Google Scholar 

  22. Watanabe U., Norimoto M., Shrinkage and elasticity of normal and compression woods in conifers, Mokuzai Gakkaishi, 42 (1996) 651–658.

    Google Scholar 

  23. Watanabe U., Fujita M., Norimoto M., Transverse shrinkage of coniferous wood cells examined using replica method and power spectrum analysis Holzforshung 52 (1998) 200–206.

    Article  CAS  Google Scholar 

  24. Watanabe U., Norimoto M., Fujita M., Gril J., Transverse shrinkage anisotropy of coniferous wood investigated by the power spectrum analysis, J. Wood Sci. 44 (1998) 9–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Perré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perré, P., Huber, F. Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for Douglas fir (Pseudotsuga menziesii) and spruce (Picea abies). Ann. For. Sci. 64, 255–265 (2007). https://doi.org/10.1051/forest:2007003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007003