Skip to main content
  • Original Article
  • Published:

Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species

Comparaison du bois de tension et du bois opposé de dix arbres provenant d’espèces différentes de forêt tropicale humide

Abstract

On 10 trees from 10 species of French Guyana tropical rainforest in a clear active process of restoring verticality growth strains were measured in situ in order to determine the occurrence of tension wood within samples. Wood specimens were cut in the vicinity of the growth strains measurements in order to measure some mechanical and physical properties. As suspected, tensile growth strains was very much higher in tension wood zone, because longitudinal modulus of elasticity was slightly higher. Longitudinal shrinkage was also much higher in tension wood than in opposite wood.

Résumé

Des mesures de contraintes de croissance ont été réalisées sur 10 arbres en cours de redressement actif appartenant à 10 espèces de la forêt tropicale humide de Guyane Française afin de s’assurer de la présence de bois de tension. Des échantillons de bois, prélevés au voisinage des mesures de contraintes de croissance, ont permis de mesurer un certains nombres de propriétés physiques et mécaniques. Comme présumé les contraintes de croissance sont beaucoup plus élevées au niveau du secteur de bois de tension, car le module d’élasticité est légèrement plus élevé. Le retrait longitudinal est aussi plus élevé dans le bois de tension que dans le bois opposé.

References

  1. Aimeras T., Thibaut A., Gril J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees 19 (2005) 457–467.

    Article  Google Scholar 

  2. Archer R.R., Growth stresses and strains in trees, Springer-Verlag, Berlin Heidelberg New-York, 1986.

    Google Scholar 

  3. Badia M.A., Constant T., Mothe F., Nepveu G., Tension wood occurrence in three cultivars of Populus × euramericana. Parti: Interclonal and intra-tree variability of tension wood, Ann. For. Sci. 63 (2006) 23–30.

    Article  Google Scholar 

  4. Baillères H., Précontraintes de croissance et propriétés mécano-physiques de clones d’Eucalyptus (Pointe-Noire — Congo: hétérogénéités, corrélations et interprétations histologiques, Thèse en Sciences du Bois, Université de Bordeaux I, 1994.

  5. Baillères H., Chanson B., Fournier M., Tollier M.T., Monties B., Structure, composition chimique et retraits de maturation du bois chez les clones d’eucalyptus, Ann. Sci. For. 52 (1995) 157–172.

    Article  Google Scholar 

  6. Barnett J.R., Cellulose microfibril angle in the cell wall of wood fibres, Biol. Rev. 79 (2004) 461–472.

    Article  PubMed  CAS  Google Scholar 

  7. Bordonné P.A., Module dynamique et frottement intérieur dans le bois mesurés sur poutres flottantes en vibrations naturelles, Wood Science thesis, Institut National Polytechnique de Lorraine, 1989.

  8. Boyd J.D., Relationship between fibre morphology and shrinkage of wood, Wood Sci. Technol. 11 (1977) 3–22.

    Article  Google Scholar 

  9. Brancheriau L., Bailleres H., Natural vibration analysis of clear wooden beams: a theoretical review, Wood Sci. Technol. 36 (2002) 345–365.

    Google Scholar 

  10. Brancheriau L., Baillères H., Détienne P., Kronland R., Metzger B., Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis, Ann. For. Sci. 63 (2006) 73–81.

    Article  Google Scholar 

  11. Clair B., Thibaut B., Shrinkage of the gelatinous layer of poplar and beech tension wood, IAWA J. 22 (2001) 121–131.

    Google Scholar 

  12. Clair B., Jaouen G., Beauchêne J., Fournier M., Mapping radial, tangential and longitudinal shrinkages and its relation to tension wood in discs of the tropical tree Symphonia globulifera, Holzforschung 57 (2003) 665–671.

    Article  CAS  Google Scholar 

  13. Clair B., Ruelle J., Thibaut B., Relationship between growth stresses, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea Sativa Mill.), Holzforschung 57 (2003) 189–195.

    Article  CAS  Google Scholar 

  14. Clair B., Aimeras T., Sugiyama J., Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar, Ann. For. Sci. 63 (2006) 507–510.

    Article  Google Scholar 

  15. Clair B., Ruelle J., Beauchêne J., Prevost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rainforest species. 1. About the presence of G layer, IAWA J. 27 (2006) 329–338.

    Google Scholar 

  16. Constant T., Mothe F., Badia M.A., Saint-André L., How to relate the standing tree shape to internal wood characteristics: Proposal of an experimental method applied to poplar trees, Ann. For. Sci. 60 (2003) 371–378.

    Article  Google Scholar 

  17. Coutand C., Jeronimidis G., Chanson B., Loup C., Comparison of mechanical properties of tension and opposite wood in Populus, Wood Sci. Technol. 38 (2004) 11–24.

    Article  CAS  Google Scholar 

  18. Dadswell H.E., Wardrop A.B., What is reaction wood? Australian Forestry 13 (1949) 22–33.

    Google Scholar 

  19. Fisher J.B., Stevenson J.W., Occurrence of reaction wood in branches of Dicotyledons and its role in tree architecture, Bot. Gaz. 142 (1981) 82–95.

    Article  Google Scholar 

  20. Fournier M., Chanson B., Thibaut B., Guitard D., Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces, Ann. Sci. For. 51 (1994) 249–266.

    Article  Google Scholar 

  21. Gindl W., Comparing Mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to the grain, Holzforschung 56 (2002) 395–401.

    Article  CAS  Google Scholar 

  22. Haines D.W., Leban J.M., Herbe C., Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods, Wood Sci. Technol. 30 (1996) 253–263.

    Article  CAS  Google Scholar 

  23. Hori R., Suzuki H., Kamiyama T., Sugiyama J., Variation of microfibril angles and chemical composition: Implication for functional properties, J. Mater. Sci. lett. 22 (2003) 963–966.

    Article  CAS  Google Scholar 

  24. Huang C.L., Kutscha N.P., Leaf G.J., Megraw R.A., Comparison of microfibril angle measurement techniques, in: Proceedings of the IAWA/IUFRO international workshop on the Significance of Microfibril Angle to Wood quality, 1998, pp. 177–205.

  25. Jourez B., Le bois de tension 1. Définition et distribution dans l’arbre, Biotechnol. Agron. Soc. Environ. 1 (1997) 100–112.

    Google Scholar 

  26. Jourez B., Le bois de tension 2. Évaluation quantitative, formation et rôle dans l’arbre, Biotechnol. Agron. Soc. Environ. 1 (1997) 167–177.

    Google Scholar 

  27. Jourez B., Riboux A., Leclercq A., Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus eummericana cv “Ghoy”), IAWA J. 22 (2001) 133–157.

    Google Scholar 

  28. Jourez B., Riboux A., Leclercq A., Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. “Ghoy” when subjected to a gravitational stimulus, Can. J. For. Res. 31 (2001) 1676–1683.

    Google Scholar 

  29. Okuyama T., Takeda H., Yamamoto H., Yoshida M., Relation between growth stress and lignin concentration in the cell wall: Ultraviolet microscopic spectral analysis, J. Wood Sci. 44 (1998).

  30. Onaka F., Studies on compression and tension wood, Wood research, Bull. Wood Res. Inst., Kyoto Univ., Japan, 24 (1949) 1–88.

    Google Scholar 

  31. Ruelle J., Yamamoto H., Thibaut B., Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species, Bioresource (2007) 235–251.

  32. Senft J.F., Bendtsen B.A., Measuring microfibrillar angles using light microscopy, Wood Fiber Sci. 17 (1985) 564–567.

    Google Scholar 

  33. Timell T.E., Compression wood in gymnosperms, Springer-Verlag, Berlin Heidelberg, 1986.

    Google Scholar 

  34. Washusen R., Ades P., Evans R., Ilic J., Vinden P., Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill. Holzforschung 55 (2001) 176–182.

    Article  CAS  Google Scholar 

  35. Washusen R., Ilic J., Waugh G., The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill., Holz RohWerkst. 61 (2003) 299–303.

    Article  Google Scholar 

  36. Yamamoto H., Okuyama T., Yoshida M., Method of determining the mean microfibril angle of wood over a wide range by the improved Cave’s method, Mokuzai Gakkaishi 39 (1993) 118–125.

    Google Scholar 

  37. Yamamoto H., Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation, Wood Sci. Technol. 22 (1998).

  38. Yamamoto H., Kojima Y., Okuyama T., Abasolo W.P., Gril J., Origin of the Biomechanical properties of wood related to the fine structure of the multi-layered cell wall, J. Biomech. Eng. 124 (2002) 432–440.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida M., Ohta H., Yamamoto H., Okuyama T., Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera L., Trees 16 (2002) 457–464.

    Article  CAS  Google Scholar 

  40. Yoshida M., Okuyama T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges, Holzforschung 56 (2002) 461–467.

    Article  CAS  Google Scholar 

  41. Yoshida M., Ikawa M., Kaneda K., Okuyama T., Stem tangential strain on the tension wood side of Fagus crenata saplings, J. Wood Sci. 49 (2003) 475–478.

    Google Scholar 

  42. Yoshizawa N., Inami A., Miyake S., Ishiguri F., Yokota S., Anatomy and lignin distribution of reaction wood in two Magnolia species, Wood Sci. Technol. 34 (2000) 183–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Ruelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelle, J., Beauchene, J., Thibaut, A. et al. Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann. For. Sci. 64, 503–510 (2007). https://doi.org/10.1051/forest:2007027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007027