Skip to main content
  • Original Article
  • Published:

Effect of stand and tree attributes on growth and wood quality characteristics from a spacing trial with Populus xiaohei

Effets de la densité de plantation sur la croissance et la qualité des bois dans un dispositif d’espacement de Populus xiaohei

Abstract

The effect of stand density (1000 stems/ha, 500 stems/ha and 250 stems/ha) on tree growth and wood quality characteristics was studied in a 27-year-old plantation species of Populus xiaohei in China. Results indicated that stand density had significant effects on tree radial growth and crown size, and the lowest stand density produced trees with the largest stem taper. In terms of wood quality characteristics, there was no significant effect of stand density on either wood basic density or fiber length. However, significant differences were found between different stand densities for wood mechanical properties. A positive relationship between modulus of elasticity, compression strength and stand density was observed, while the highest modulus of rupture was recorded at a moderate density of 500 stems/ha. Stand density was responsible for highly significant effects on both juvenile wood and wet heartwood basal areas in individual trees, and there was an obvious tendency towards increasing juvenile wood and wet heartwood basal areas with decreasing stand density. In addition, the relationships between wood quality characteristics and tree and stand characteristics were also examined. Some wood quality characteristics, namely mechanical properties and juvenile wood and wet heartwood basal areas, were quantified successfully in relation to selected tree characteristics using a regression approach with various degrees of goodness of fit. Based on comprehensive consideration of various factors, such as wood quality, tree growth, and establishment cost, results from this study suggest that a density of 500 stems/ha is optimum for wood production.

Résumé

Ce travail analyse les effets de la densité de plantation (1000 tiges/ha, 500 tiges/ha and 250 tiges/ha) sur la croissance et la qualité du bois dans une plantation chinoise de Populus xiaohei âgée de 27 ans. Les résultats montrent (i) que la densité de plantation affecte significativement la croissance radiale et la dimension des houppiers et (ii) que la densité la plus faible conduit à des arbres ayant le défilement le plus important. Par contre, il n’y a aucun effet de la densité de plantation sur la densité du bois ou sur la longueur des fibres. Cependant, il existe des différences significatives entre traitements pour les propriétés mécaniques. Nous avons observé une corrélation positive entre le module d’élasticité, la résistance en compression et la densité de plantation tandis que le module de rupture le plus élevé a été obtenu pour la densité de plantation intermédiaire de 500 tiges/ha. La densité de plantation est responsable des effets les plus significatifs sur les surfaces terrières de bois juvénile et de cœur humide qui augmentent lorsque la densité de plantation diminue. Nous avons également analysé les relations entre la qualité des bois et les caractéristiques des arbres et des peuplements. Certaines propriétés du bois comme les propriétés mécaniques et les surfaces terrières de bois juvénile et de cœur humide ont été quantifiées avec succès par l’utilisation de régressions multiples. À partir de ces résultats il a été possible de prendre en compte différents facteurs tels que la qualité des bois, la croissance et le coût d’installation des différentes densités de plantation et de montrer que la densité de plantation de 500 tiges/ha est optimale pour la production de bois.

References

  1. Amarasekara H., Denne M.P., Effects of crown size on wood characteristics of Corsican pine in relation to definitions of juvenile wood, crown formed wood and core wood, Forestry 75 (2002) 51–61.

    Article  Google Scholar 

  2. Bao F.C., Jiang Z.H., Wood properties of main tree species from plantation in China, China Forestry Publishing House, Beijing, China, 1998.

    Google Scholar 

  3. Castéra P., Faye C., Ouadrani A.E., Prevision of the bending strength of timber with a multivariate statistical approach, Ann. For. Sci. 53 (1996) 885–898.

    Article  Google Scholar 

  4. Chuang S.T., Wang S.Y., Evaluation of standing tree quality of Japanese cedar grown with different spacing using stress-wave and ultrasonic-wave methods, J. Wood Sci. 47 (2001) 245–253.

    Article  Google Scholar 

  5. Fang S.Z., Yang W.Z., Within tree variation in wood basic density and cellulose content of poplar clones, J. Plant Res. Environ. 13 (2004) 19–23.

    CAS  Google Scholar 

  6. Faust T.D., McAlister R.H., Zarnoch S.J., Strength and stiffness properties of sweetgum and yellow-poplar structural lumber, For. Prod. J. 40 (1991) 58–64.

    Google Scholar 

  7. Gindl W., Teischinger A., Axial compression strength of Norway spruce related to structural variability and lignin content, Compos. Part A. Appl. Sci. Manuf. 33 (2002) 1623–1628.

    Article  Google Scholar 

  8. Green S.R., Grace J., Hutchings N.J., Observation of turbulent air flow in three stands of widely spaced Sitka spruce, Agric. For. Meteorol. 74 (1995) 205–225.

    Article  Google Scholar 

  9. Jiang X.M., Zhang L.F., Zhang Q.W., Genetic variation in basic wood properties of 36 clones of Populus deltoides, For. Res. 7 (1994) 253–258.

    Google Scholar 

  10. Jiang Z.H., Peng Z.H., Wood properties of the global important tree species, Science Press, China, 2001.

    Google Scholar 

  11. Kang K.Y., Zhang S.Y., Mansfield S.D., The effects of initial spacing on wood density, fiber and pulp properties in jack pine (Pinus banksiana Lamb.), Holzforschung 58 (2004) 455–463.

    Article  CAS  Google Scholar 

  12. Krause C., Gagnon R., Wet heartwood distribution in the stem, stump, and root wood of black spruce in the Quebec boreal forest, Canada, North. J. Appl. For. 22 (2005) 12–18.

    Google Scholar 

  13. Krause C., Gagnon R., The relationship between site and tree characteristics and the presence of wet heartwood in black spruce in the boreal forest of Quebec, Canada, Can. J. For. Res. 36 (2006) 1519–1526.

    Article  Google Scholar 

  14. Lasserre J.P., Mason E.G., Watt M.S., The effects of genotype and spacing on Pinus radiata (D. Don) corewood stiffness in an 11-year old experiment, For. Ecol. Manage. 205 (2005) 375–383.

    Article  Google Scholar 

  15. Lei Y.C., Zhang S.Y., Jiang Z.H., Models for predicting lumber bending MOR and MOE based on tree and stand characteristics in black spruce, Wood Sci. Technol. 39 (2005) 37–47.

    Article  CAS  Google Scholar 

  16. Li S.W., Zhang Z.Y., He C.Z., An X.M., Progress on hybridization breeding of poplar in China, World For. Res. 17 (2004) 37–41.

    Google Scholar 

  17. Liu S.Q., Effect of different spaces on wood quality in poplar, J. Anhui Agric. Univ. 27 (2000) 374–379.

    Google Scholar 

  18. Lu J.X., Bao F.C., Plantation in the future in China: forest silvi-culture, wood quality and utilization, Forest. Stud. China, 2 (1999) 16–23.

    Google Scholar 

  19. Macdonald E., Hubert J., A review of the effects of silviculture on timber quality of Sitka spruce, Forestry 75 (2002) 107–138.

    Article  Google Scholar 

  20. Mmolotsi R.M., Teklehaimanot Z., The effect of initial tree-planting density on timber and wood-fuel properties of red alder and sycamore, Can. J. For. Res. 36 (2006) 1475–1483.

    Article  Google Scholar 

  21. National Technical Monitoring Bureau, National standard GB 19321942-91: Standard methods for determining wood physical and mechanical properties, China Standard Press, Beijing, 1991.

    Google Scholar 

  22. Persson B., Persson A., Stahl E.G., Karlmats U., Wood quality of Pinus sylevstris progenies at various spacing, For. Ecol. Manage. 76 (1995) 127–138.

    Article  Google Scholar 

  23. Ren H.Q., Liu X.E., Jiang Z.H., Wang Y.H., Yu H.Q., Effects of planting density on wood anatomical properties of Populus xiaohei, For. Res. 19 (2006) 364–369.

    Google Scholar 

  24. Roos K.D., Shottafer J.E., Shepard R.K., The relationship between selected mechanical properties and age in quaking aspen, For. Prod. J. 40 (1990) 54–56.

    Google Scholar 

  25. Saucier J.R., Forest management and wood quality, in: Saucier J.R., Cubbage F.N. (Eds.), Proceedings, Southern Plantation Wood Quality Workshop, Athens, GA, 1990, pp.47–56.

  26. Watson P., Garner C., Robertson R., Reath S., Gee W., Hunt K., The effects of initial tree spacing on the fiber properties of plantation-grown coastal western hemlock, Can. J. For. Res. 33 (2003) 2460–2468.

    Article  Google Scholar 

  27. Whitehead D., Edwards W.R.N., Jarvis P.G., Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus conforta, Can. J. For. Res.14 (1984) 940–947.

    Article  Google Scholar 

  28. Yang K.C., Impact of spacing on width and basal area of juvenile and mature wood in Picea mariana and Pieca glauca, Wood Fiber Sci. 26 (1994) 479–488.

    CAS  Google Scholar 

  29. Yang K.C., Hazenberg G., Impact of spacing on sapwood and heart-wood thickness in Picea mariana (Mill.) B.S.P. and Pieca glauca (Moench.) VOSS, Wood Fiber Sci. 24 (1992) 330–336.

    Google Scholar 

  30. Yang K.C., Hazenberg G., Impact of spacing on tracheid length, relative density, and growth rate of juvenile wood and mature wood in Picea mariana, Can. J. For. Res. 24 (1994) 996–1007.

    Article  Google Scholar 

  31. Zhang D.M., Bao F.C., Zhang Z.Y., Huang R.F., Genetic analysis of wetwood proportion on clone test stand of Populus tomentosa, Sci. Sil. Sin. 41 (2005) 140–144.

    Google Scholar 

  32. Zhang S.Y., Chauret G., Ren H.Q., Desjardins R., Impact of plantation black spruce initial spacing on lumber grade yield, bending properties and MSR yield, Wood Fiber Sci. 34 (2002) 460–475.

    CAS  Google Scholar 

  33. Zhang S.Y., Lei Y.C., Bowling C., Quantifying stem quality characteristics in relation to initial spacing and modeling their relationship with tree characteristics in black spruce (Picea mariana), North. J. Appl. For. 22 (2005) 85–93.

    Google Scholar 

  34. Zhang S.Y., Tong Q.J., Modeling lumber recovery in relation to selected tree characteristics in jack pine using sawing simulator Optitek, Ann. For. Sci. 62 (2005) 219–228.

    Article  Google Scholar 

  35. Zhu G.Q., Huang M.R., Pan H.X., Li H.G., Feng W.Z., Study on chemical characteristics and formation mechanism of poplar wet heartwood, Sci. Sil. Sin. 33 (1997) 260–266.

    Google Scholar 

  36. Zobel B.J., Buijtenen J.P., Wood variation-its cause and control, Springer-verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.

    Google Scholar 

  37. Zobel B.J., Webb C., Henson F., Core or juvenile wood of loblolly and slash pine trees, TAPPI 42 (1959) 345–356.

    CAS  Google Scholar 

  38. Zu B.S., Foreign studies on wet heart wood of poplars, Sci. Sil. Sin. 36 (2000) 85–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, ZH., Wang, XQ., Fei, BH. et al. Effect of stand and tree attributes on growth and wood quality characteristics from a spacing trial with Populus xiaohei . Ann. For. Sci. 64, 807–814 (2007). https://doi.org/10.1051/forest:2007063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007063