Skip to main content
  • Original Article
  • Published:

Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55)

Relation entre contrainte de croissance et propriétés du bois de peuplier I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55)

Abstract

Six inclined poplar I-69 (Populus deltoids cv. I-69/55) trees were collected for studying the influence of growth stress level on wood properties. Growth stress indicator (GSI) was measured at eight positions around the periphery of each trunk at breast height and corresponding wood samples were obtained. Wood anatomical, physico-mechanical and chemical characteristics were measured, including cell diameter, fibre length, double wall thickness excluding the gelatinous layer, lumen diameter after gelatinous layer removal, proportion of wood tissues, basic density, FSP, MOE, compressive strength, shrinkage and chemical composition. Each property was regarded and discussed in relation to the growth stress level.

Résumé

Six peupliers I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55) inclinés ont été collectés pour étudier l’influence du niveau de contrainte de croissance sur les propriétés du bois. Des mesures d’indicateur de contrainte de croissance (ICC) ont été réalisées en huit positions à la périphérie de chaque tronc à 1,30 m et des échantillons ont été prélevés dans le bois à proximité. Des mesures anatomiques, physico-mécaniques et chimiques ont été réalisées : diamètre et longueur de fibre, épaisseur de la double paroi et diamètre du lumen hors couche gélatineuse, proportion des différents types de tissus, infradensité, point de saturation des fibres, module d’élasticité, limite élastique en compression, retrait et composition chimique. L’évolution des propriétés avec le niveau de contrainte de croissance est décrite et discutée.

References

  1. AFNOR, French standard NFB 51.007, approved in February 1942, No. 85365, 1985.

  2. Aimeras T., Thibaut A., Gril J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees Struct. Funct. 19 (2005) 457–467.

    Google Scholar 

  3. Aloni R., Vascular differentiation within the plant, in: Roberts L.W., Gahan P.B., Aloni R. (Eds.), Vascular differentiation and plant growth regulators, Springer-Verlag, Berlin, 1988, pp. 39–59.

    Google Scholar 

  4. Arganbright D.G., Bensend D.W., Manwiller F.G., Influence of gelatinous fibers on the shrinkage of silver maple, Wood Sci. 3 (1970) 83–89.

    Google Scholar 

  5. Barefoot A.C., Selected wood characteristics of young yellow-poplar. Part II: Shrinkage of normal and abnormal wood, For. Prod. J. 13 (1963) 443–448.

    Google Scholar 

  6. Bordonné P.-A., Module dynamique et frottement intérieur dans le bois. Mesures sur poutres flottantes en vibrations naturelles, Institut National Polytechnique de Lorraine, Nancy, 1989, 109 p.

    Google Scholar 

  7. Boyd J.D., Relationship between fibre morphology and shrinkage of wood, Wood Sci. Technol. 11 (1977) 3–22.

    Article  Google Scholar 

  8. Browning B.L., Methods of wood chemistry, Interscience, John Wiley & Sons, New York, 1967.

    Google Scholar 

  9. Chow K.Y., A comparative study of the structure and composition of tension wood in beech (Fagus sylvatica L.), Forestry 20 (1946) 62–77.

    Article  Google Scholar 

  10. Christensen G.N., Kelsey K.E., Die Geschwindigkeit der Wasserdampfsorption durch Holz, Holz Roh-Werkst. 17 (1959) 178–188.

    Article  CAS  Google Scholar 

  11. Clair B., Gril J., Baba K., Thibaut B., Sugiyama J., Precautions for the structural analysis of the gelatinous layer in tension wood, IAWA J. 26 (2005) 189–195.

    Google Scholar 

  12. Clair B., Ruelle J., Thibaut B., Relationship between growth stresses, mechano-physical properties and proportion of fibres with gelatinous layer in chestnut (Castanea Sativa Mill.), Holzforschung 57 (2003) 189–195.

    Article  CAS  Google Scholar 

  13. Clair B., Thibaut B., Shrinkage of the gelatinous layer of poplar and beech tension wood, IAWA J. 22 (2001) 121–131.

    Google Scholar 

  14. Clair B., Thibaut B., Sugiyama J., On the detachment of the gelatinous layer in tension wood fiber, J. Wood Sci. 51 (2005) 218–221.

    Article  CAS  Google Scholar 

  15. Côté W.A.J., Day A.C., Timell T.E., A contribution to the ultrastructure of tension wood fibers, Wood Sci. Technol. 3 (1969) 257–271.

    Article  Google Scholar 

  16. Coutand C., Jeronimidis G., Chanson B., Loup C., Comparison of mechanical properties of tension and opposite wood in Populus, Wood Sci. Technol. 38 (2004) 11–24.

    Article  CAS  Google Scholar 

  17. Cronshaw J., Morey P.R., The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings, Protoplasma 65 (1968) 379–391.

    Article  CAS  Google Scholar 

  18. Dadswell H.E., Wardrop A.B., What is reaction wood?, Aust. For. 13 (1949) 22.

    Google Scholar 

  19. Dadswell H.E., Wardrop A.B., The structure and properties of tension wood, Holzforschung 9 (1955) 97–104.

    Article  CAS  Google Scholar 

  20. Fang C.-H., Clair B., Gril J., Almeras T., Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain, Wood Sci. Technol. 41 (2007) 659–671.

    Article  CAS  Google Scholar 

  21. Fang C.-H., Clair B., Gril J., Liu S.-Q., Growth stresses are highly controlled by the amount of G-layer in poplar tension wood, IAWA J. (2008) in press.

  22. Fang C.-H., Liu S.-Q., Zhu L.-H., Jin S.-X., Wu W.-Q., Comparative study on the effect of fertilization on wood anatomical features of Poplar 1–69 (in Chinese), J. A-H.agric. Univ. 29 (2002) 398–402.

    Google Scholar 

  23. Fisher J.B., Stevenson J.W., Occurence of reaction wood in branches of Dicotyledons and its role in tree architecture, Bot. Gaz. 142 (1981) 82–95.

    Article  Google Scholar 

  24. Fournier M., Chanson B., Thibaut B., Guitard D., Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces, Ann. Sci. For. 51 (1994) 249–266.

    Article  Google Scholar 

  25. Fujita M., Saiki H., Harada H., Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers, Mokuzai Gakkaishi 20 (1974) 147–156.

    Google Scholar 

  26. Furuya N., Takahashi S., Miyazaki M., The chemical compositions of gelatinous layer from the tension wood of Populus euroamericana, Mokuzai Gakkaishi 16 (1970) 26–30.

    CAS  Google Scholar 

  27. Jourez B., Riboux A., Leclercq A., Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv. Ghoy), IAWA J. 22 (2001) 133–157.

    Google Scholar 

  28. Jourez B., Riboux A., Leclercq A., Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus, Can. J. For. Res. 31 (2001) 1676–1683.

    Google Scholar 

  29. Kaeiser M., Boyce S.G., The relation of gelatinous fibers to wood structure in eastern cottonwood (Populus deltoides Marsh.), Am. J. Bot. 52 (1965) 711–715.

    Article  Google Scholar 

  30. Kennedy R.W., Fibre lenght of fast and slow grown black cotton-wood, For. Chron. 33 (1957) 46–55.

    Google Scholar 

  31. Klason P., Bidrag till narmare kännedom on granvedens kemiska sammansättning, Arkiv för Kemi, Mineralogi och Geologi 3 (1908) 1–20.

    Google Scholar 

  32. Koponen S., Toratti T., Kanerva P., Modelling longitudinal elastic and shrinkage properties of wood, Wood Sci. Technol. 23 (1989) 55–63.

    Article  Google Scholar 

  33. Koubaa A., Hernandez R., Beaudoin M., Poliquin J., Interclonal, intraclonal, and within-tree variation in fiber length of poplar hybrid clones, Wood Fiber Sci. 30 (1998) 40–47.

    CAS  Google Scholar 

  34. Kroll R.E., Ritter D.C., Au K.C., Anatomical and physical properties of Balsam poplar (Populus balsamifera L.) in Minnesota, Wood Fiber Sci. 24 (1992) 13–24.

    Google Scholar 

  35. Kubler H., Growth stresses in trees and related wood properties, For. Abstr. 10 (1987) 62–119.

    Google Scholar 

  36. Lenz O., Le bois de quelques peupliers de culture en Suisse, Ann. Inst. Fed. Rech. For. 30 (1954).

  37. Lowell E.C., Krahmer R.L., Effects of lean in red alder trees on wood shrinkage and density, Wood Fiber Sci. 25 (1993) 2–7.

    Google Scholar 

  38. Morey P.R., Cronshaw J., Induction of tension wood by 2,4-dinitrophenol and auxins, Protoplasma 65 (1968) 393–405.

    Article  CAS  Google Scholar 

  39. Norberg P.H., Meier H., Physical and chemical properties of the gelatinous layer in tension wood fibre of aspen (Populus tremula L.), Holzforschung 20 (1966) 174–178.

    Article  CAS  Google Scholar 

  40. Okuyama T., Yamamoto H., Iguchi M., Yoshida M., Generation process of growth stresses in cell walls II. Growth stresses in tension wood, Mokuzai Gakkaishi 36 (1990) 797–803.

    Google Scholar 

  41. Okuyama T., Yamamoto H., Yoshida M., Hattori Y., Archer R.R., Growth stresses in tension wood: role of microfibrils and lignification, Ann. Sci. For. 51 (1994) 291–300.

    Article  Google Scholar 

  42. Onaka F., Studies on compression and tension wood, Wood research, Bulletin of the Wood research Institute, Kyoto University, Japan 24 (1949) 1–88.

    Google Scholar 

  43. Panshin A.J., de Zeeuw C., Textbook of Wood Technology, Mc Graw-Hill Book Co., New York, 1980.

    Google Scholar 

  44. Parham R.A., Robinson K.W., Isebrands J.G., Effects of tension wood on Kraft paper from a short-rotation hardwood (Populus Tristis No. 1), Wood Sci. Technol. 11 (1977) 291–303.

    Article  Google Scholar 

  45. Pilate G., Chabbert B., Cathala B., Yoshinaga A., Leplé J.-C, Laurans F., Lapierre C., Ruel K., Lignification and tension wood, C. R. Biol. 327 (2004) 889–901.

    Article  PubMed  CAS  Google Scholar 

  46. Ruelle J., Beauchêne J., Thibaut A., Thibaut B., Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species, Ann. For. Sci. 64 (2007) 503–510.

    Article  Google Scholar 

  47. Ruelle J., Clair B., Beauchêne J., Prévost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rain Forest species. 2. Comparison of some anatomical and ultrastructural criteria, IAWA J. 27 (2006) 329–338.

    Google Scholar 

  48. Saiki H., Ono K., Cell wall organization of gelatinous fibers in tension wood, Bull. Kyoto Univ. For. 42 (1971) 210–220.

    Google Scholar 

  49. Salmén L., Ruvo A.D., A model for the prediction of fiber elasticity, Wood Fiber Sci. 17 (1985) 336–350.

    Google Scholar 

  50. Sassus F., Déformations de maturation et propriétés du bois de tension chez le hêtre et le peuplier : mesures et modèles, in: Thibaut B. (Ed.), Thesis ENGREF en Sciences du bois, Montpellier, 1998.

  51. Scurfield G., Wardrop A.B., The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials, Aust. J. Bot. 10 (1962) 93–105.

    Article  Google Scholar 

  52. Sugiyama K., Okuyama T., Yamamoto H., Yoshida M., Generation process of growth stresses in cell walls: Relation between longitudinal released strain and chemical compostion, Wood Sci. Technol. 27 (1993) 257–262.

    Article  CAS  Google Scholar 

  53. Wada M., Okano T., Sugiyama J., Horii F., Characterization of tension and normally lignified wood cellulose in Populus maximowiczii, Cellulose 2 (1995) 223–233.

    Article  CAS  Google Scholar 

  54. Wardrop A.B., The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus, Aust. J. Bot. 4 (1956) 152–166.

    Article  Google Scholar 

  55. Wardrop A.B., The reaction anatomy of arborescent angiosperms, in: Zimmermann M.H. (Ed.), The formation of wood in forest tree, Academic Press, New York, 1964, pp. 405–456.

    Google Scholar 

  56. Wardrop A.B., Dadswell H.E., The nature of reaction wood I — The structure and properties of tension wood fibres, Aust. J. Sci. Res. B, Biol. Sci. 1 (1948) 3–16.

    Google Scholar 

  57. Washusen R., Ades P., Evans R., Ilic J., Vinden P., Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenancesof 10-year-old Eucalyptus globulus Labill, Holzforschung 55 (2001) 176–182.

    Article  CAS  Google Scholar 

  58. Washusen R., Ilic J., Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill, Holz Roh-Werkst. 59 (2001) 85–93.

    Article  Google Scholar 

  59. Washusen R., Ilic J., Waugh G., The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill, Holz Roh-Werkst. 61 (2003) 299–303.

    Article  Google Scholar 

  60. Yamamoto H., Abe K., Arakawa Y., Okuyama T., Gril J., Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum, J. Wood Sci. 51 (2005) 222–233

    Article  CAS  Google Scholar 

  61. Zimmermann M.H. (Ed.), The formation of wood in forest trees, Academic Press, New York, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, CH., Guibal, D., Clair, B. et al. Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55). Ann. For. Sci. 65, 307 (2008). https://doi.org/10.1051/forest:2008008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008008