Planta Med 2008; 74(13): 1608-1624
DOI: 10.1055/s-0028-1088300
Review
© Georg Thieme Verlag KG Stuttgart · New York

Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components

Clarissa Gerhauser1
  • 1Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
In memory of Prof. B. L. Pool-Zobel
Further Information

Publication History

Received: May 25, 2008 Revised: July 17, 2008

Accepted: July 31, 2008

Publication Date:
14 October 2008 (online)

Abstract

Apples (Malus sp., Rosaceae) are a rich source of nutrient as well as non-nutrient components and contain high levels of polyphenols and other phytochemicals. Main structural classes of apple constituents include hydroxycinnamic acids, dihydrochalcones, flavonols (quercetin glycosides), catechins and oligomeric procyanidins, as well as triterpenoids in apple peel and anthocyanins in red apples. Several lines of evidence suggest that apples and apple products possess a wide range of biological activities which may contribute to health beneficial effects against cardiovascular disease, asthma and pulmonary dysfunction, diabetes, obesity, and cancer (reviewed by Boyer and Liu, Nutr J 2004). The present review will summarize the current knowledge on potential cancer preventive effects of apples, apple juice and apple extracts (jointly designated as apple products). In brief, apple extracts and components, especially oligomeric procyanidins, have been shown to influence multiple mechanisms relevant for cancer prevention in in vitro studies. These include antimutagenic activity, modulation of carcinogen metabolism, antioxidant activity, anti-inflammatory mechanisms, modulation of signal transduction pathways, antiproliferative and apoptosis-inducing activity, as well as novel mechanisms on epigenetic events and innate immunity. Apple products have been shown to prevent skin, mammary and colon carcinogenesis in animal models. Epidemiological observations indicate that regular consumption of one or more apples a day may reduce the risk for lung and colon cancer.

Abbreviations

AC:aberrant crypts

ACF:aberrant crypt foci

AE02/-03/-04:apple juice polyphenol extract

AIS:‘alcohol-insoluble substance’

AP-1:activator protein 1

Apaf-1:apoptotic protease activatingfactor 1

APE:apple polyphenol extract

B(a)P:benzo[a]pyrene

bw:body weight

CI:confidence interval

COBRA:combined bisulfite restrictionanalysis

Cox-1:cyclooxygenase-1

Cyp1A:cytochrome P450 1A

DEP-1:density-enhanced protein-tyrosinephosphatase-1

DMBA:7,12-dimethylbenz[a]anthracene

DMH:1,2-dimethylhydrazine

DNMT:DNA methyltransferase

DPPH:1,1-diphenyl-2-picrylhydrazyl

EGCG:(–)-epigallocatechin 3-gallate

EGF:epidermal growth factor

EGFR:epidermal growth factor receptor

FCS:fetal calf serum

Fr.P:procyanidin-enriched fraction P

GJIC:gap-junctional intracellular communication

GSK3β:glycogen synthase kinase 3β

GST:glutathione S-transferase

HDAC:histone deacetylase

IL-2Rα:interleukin-2 receptor α-chain

IQ:2-amino-3-methylimidazo[4,5-f]quinoline

MAP-kinase:mitogen-activated protein kinase

NSP:non-starch polysaccharides

NHS:Nurses Health Study

ODC:ornithine decarboylase

OPC:oligomeric procyanidins

OR:odds ratio

ORAC:oxygen radical absorbance capacity

PARP:poly(ADP-ribose)polymerase

PBMC:peripheral blood mononuclearcells

PGs:prostaglandins

PTM:permeability transition pore

PKC:protein kinase C

ROS:reactive oxygen species

RR:relative risk

SCFA:short-chain fatty acids

TNF-α:tumor necrosis factor-α

TPA:12-O-tetradecanolyphorbol 13-acetate

TRAIL:TNF-related apoptosis-inducing ligand

TSG:tumor suppressor gene

References

  • 1 Sporn M B, Newton D L. Chemoprevention of cancer with retinoids.  Fed Proc. 1979;  38 2528-34
  • 2 Kelloff G J, Lippman S M, Dannenberg A J, Sigman C C, Pearce H L, Reid B J. et al . Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer – a plan to move forward.  Clin Cancer Res. 2006;  12 3661-97
  • 3 Ellinger W. ZMP-Marktbilanz Obst 2007, Deutschland, Europäische Union, Weltmarkt. Bonn; ZMP Zentrale Markt- und Preisberichtstelle GmbH 2007
  • 4 Wirtschaftsvereinigung Alkoholfreie Getränke e. V. Pro-Kopf-Verbrauch alkoholfreier Getränke in Deutschland 2006. Germany; Wirtschaftsvereinigung Alkoholfreie Getränke 2008
  • 5 Boyer J, Liu R H. Apple phytochemicals and their health benefits.  Nutr J. 2004;  3 5
  • 6 Souci S W, Fachmann W, Kraut H, revised by Kirchhoff E. Food composition and nutrition tables, based on the 6th edition. Stuttgart; medpharm GmbH Scientific Publishers 2005
  • 7 Thielen C, Will F, Zacharlas J, Dietrich H, Jacob H. Polyphenols in apples: Distribution of polyphenols in apple tissue and comparison of fruit and juice.  Dtsch Lebensmitt Rundsch. 2004;  100 389-98
  • 8 Lata B, Tomala K. Apple peel as a contributor to whole fruit quantity of potentially healthful bioactive compounds. Cultivar and year implication.  J Agric Food Chem. 2007;  55 10 795-802
  • 9 Lata B, Przeradzka M, Binkowska M. Great differences in antioxidant properties exist between 56 apple cultivars and vegetation seasons.  J Agric Food Chem. 2005;  53 8970-8
  • 10 Van Buren J. Fruit phenolics. In: Hulme AC, editor. The biochemistry of fruit and their products.  New York: Academic. Press;  1970 269-304
  • 11 Guyot S, Marnet N, Sanoner P, Drilleau J F. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices.  J Agric Food Chem. 2003;  51 6240-7
  • 12 Kahle K, Kraus M, Richling E. Polyphenol profiles of apple juices.  Mol Nutr Food Res. 2005;  49 797-806
  • 13 Vrhovsek U, Rigo A, Tonon D, Mattivi F. Quantitation of polyphenols in different apple varieties.  J Agric Food Chem. 2004;  52 6532-8
  • 14 Keller P, Strekker P, Arnold G, Schieber A, Carle R. Bestimmung phenolischer Verbindungen in Tafel- und Mostäpfeln mittels HPLC.  Fluessiges Obst. 2001;  68 480-3
  • 15 Schmitz-Eiberger M, Weber V, Treutter D, Baab G, Lorenz J. Bioactive components in fruits from different apple varieties.  J Appl Bot. 2003;  77 167-71
  • 16 Mangas J J, Suarez B, Picinelli A, Moreno J, Blanco D. Differentiation by phenolic profile of apple juices prepared according to two membrane techniques.  J Agric Food Chem. 1997;  45 4777-84
  • 17 Tsao R, Yang R, Young J C, Zhu H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC).  J Agric Food Chem. 2003;  51 6347-53
  • 18 Pearson D A, Tan C H, German J B, Davis P A, Gershwin M E. Apple juice inhibits human low density lipoprotein oxidation.  Life Sci. 1999;  64 1913-20
  • 19 Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J P. Polyphenol profiles of French cider apple varieties (Malus domestica sp.).  J Agric Food Chem. 1999;  47 4847-53
  • 20 Alonso-Salces R M, Barranco A, Abad B, Berrueta L A, Gallo B, Vicente F. Polyphenolic profiles of Basque cider apple cultivars and their technological properties.  J Agric Food Chem. 2004;  52 2938-52
  • 21 Guyot S, Marnet N, Laraba D, Sanoner P, Drilleau J F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien).  J Agric Food Chem. 1998;  46 1698-705
  • 22 Guyot S, Marnet N, Drilleau J. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states.  J Agric Food Chem. 2001;  49 14-20
  • 23 Shibusawa Y, Yanagida A, Isozaki M, Shindo H, Ito Y. Separation of apple procyanidins into different degrees of polymerization by high-speed counter-current chromatography.  J Chromatogr A. 2001;  915 253-7
  • 24 Yanagida A, Kanda T, Shoji T, Ohnishi-Kameyama M, Nagata T. Fractionation of apple procyanidins by size-exclusion chromatography.  J Chromatogr A. 1999;  855 181-90
  • 25 Yanagida A, Kanda T, Takahashi T, Kamimura A, Hamazono T, Honda S. Fractionation of apple procyanidins according to their degree of polymerization by normal-phase high-performance liquid chromatography.  J Chromatogr A. 2000;  890 251-9
  • 26 Shoji T, Masumoto S, Moriichi N, Kanda T, Ohtake Y. Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC-ESI/MS and MALDI-TOF/MS.  J Chromatogr A. 2006;  1102 206-13
  • 27 Aron P M, Kennedy J A. Flavan-3-ols: nature, occurrence and biological activity.  Mol Nutr Food Res. 2008;  52 79-104
  • 28 Huemmer W, Dietrich H, Will F, Schreier P, Richling E. Content and mean polymerization degree of procyanidins in extracts obtained from clear and cloudy apple juices.  Biotechnol J. 2008;  3 234-43
  • 29 Frighetto R TS, Welendorf R M, Nigro E N, Frighetto N, Siani A C. Isolation of ursolic acid from apple peels by high speed counter-current chromatography.  Food Chem. 2008;  106 767-71
  • 30 He X, Liu R H. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple's anticancer activity.  J Agric Food Chem. 2007;  55 4366-70
  • 31 Milner J A. Diet and cancer: facts and controversies.  Nutr Cancer. 2006;  56 216-24
  • 32 Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols.  J Nutr. 2000;  130 2073S-85S
  • 33 Yang C S, Landau J M, Huang M T, Newmark H L. Inhibition of carcinogenesis by dietary polyphenolic compounds.  Annu Rev Nutr. 2001;  21 381-406
  • 34 Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.  Am J Clin Nutr. 2005;  81 230S-42S
  • 35 Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats.  J Nutr. 2001;  131 2109-14
  • 36 Crespy V, Aprikian O, Morand C, Besson C, Manach C, Demigne C. et al . Bioavailability of phloretin and phloridzin in rats.  J Nutr. 2001;  131 3227-30
  • 37 Kahle K, Kraus M, Scheppach W, Richling E. Colonic availability of apple polyphenols – a study in ileostomy subjects.  Mol Nutr Food Res. 2005;  49 1143-50
  • 38 Kahle K, Huemmer W, Kempf M, Scheppach W, Erk T, Richling E. Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption.  J Agric Food Chem. 2007;  55 10 605-14
  • 39 Olthof M R, Hollman P CH, Katan M B. Chlorogenic acid and caffeic acid are absorbed in humans.  J Nutr. 2001;  131 66-71
  • 40 Olthof M R, Hollman P CH, Buijsman M NCP, van Amelsvoort J MM, Katan M B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans.  J Nutr. 2003;  133 1806-14
  • 41 Gonthier M -P, Verny M -A, Besson C, Remesy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats.  J Nutr. 2003;  133 1853-9
  • 42 Walle T, Otake Y, Walle U K, Wilson F A. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption.  J Nutr. 2000;  130 2658-61
  • 43 Walle T, Walle U K, Halushka P V. Carbon dioxide is the major metabolite of quercetin in humans.  J Nutr. 2001;  131 2648-52
  • 44 Gu L, Kelm M A, Hammerstone J F, Beecher G, Holden J, Haytowitz D. et al . Concentrations of proanthocyanidins in common foods and estimations of normal consumption.  J Nutr. 2004;  134 613-7
  • 45 Prior R L, Gu L. Occurrence and biological significance of proanthocyanidins in the American diet.  Phytochemistry. 2005;  66 2264-80
  • 46 Spencer J P, Schroeter H, Rechner A R, Rice-Evans C. Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. .  Antioxid Redox Signal. 2001;  3 1023-39
  • 47 Rios L Y, Bennett R N, Lazarus S A, Remesy C, Scalbert A, Williamson G. Cocoa procyanidins are stable during gastric transit in humans.  Am J Clin Nutr. 2002;  76 1106-10
  • 48 Gerhauser C, Klimo K, Kahle K, Garreta A, Steinle R, Scheppach W. et al . Cancer chemopreventive potential of apple juice – Results of a short-term human intervention study with ileostomy patients.  EJC Suppl. 2008;  6 50
  • 49 Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C. et al . Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids.  J Nutr. 2000;  130 2733-8
  • 50 De Flora S, Ferguson L R. Overview of mechanisms of cancer chemopreventive agents.  Mutat Res. 2005;  591 8-15
  • 51 Ferguson L R. Antimutagens as cancer chemopreventive agents in the diet.  Mutat Res. 1994;  307 395-410
  • 52 Hensel A, Meier K. Pectins and xyloglucans exhibit antimutagenic activities against nitroaromatic compounds.  Planta Med. 1999;  65 395-9
  • 53 Ferguson L R, Zhu S, Kestell P. Contrasting effects of non-starch polysaccharide and resistant starch-based diets on the disposition and excretion of the food carcinogen, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), in a rat model.  Food Chem Toxicol. 2003;  41 785-92
  • 54 Kestell P, Zhu S, Ferguson L R. Mechanisms by which resistant starches and non-starch polysaccharide sources affect the metabolism and disposition of the food carcinogen, 2-amino-3-methylimidazo[4,5-f]quinoline.  J Chromatogr B Analyt Technol Biomed Life Sci. 2004;  802 201-10
  • 55 Kohle C, Bock K W. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2.  Biochem Pharmacol. 2007;  73 1853-62
  • 56 Pohl C, Will F, Dietrich H, Schrenk D. Cytochrome P450 1A1 expression and activity in Caco-2 cells: modulation by apple juice extract and certain apple polyphenols.  J Agric Food Chem. 2006;  54 10 262-8
  • 57 Gerhauser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J. et al . Mechanism-based in vitro screening of potential cancer chemopreventive agents.  Mutat Res. 2003;  523 – 524 163-72
  • 58 Zessner H, Pan L, Will F, Klimo K, Knauft J, Niewohner R. et al . Fractionation of polyphenol-enriched apple juice extracts to identify constituents with cancer chemopreventive potential.  Mol Nutr Food Res. 2008;  52 ( 1) S28-44
  • 59 Wilms L C, Hollman P C, Boots A W, Kleinjans J C. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes.  Mutat Res. 2005;  582 155-62
  • 60 Wilms L C, Boots A W, de Boer V C, Maas L M, Pachen D M, Gottschalk R W. et al . Impact of multiple genetic polymorphisms on effects of a 4-week blueberry juice intervention on ex vivo induced lymphocytic DNA damage in human volunteers.  Carcinogenesis. 2007;  28 1800-6
  • 61 Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H, Will F. et al . Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics.  Mol Carcinogen. 2006;  45 164-74
  • 62 Veeriah S, Miene C, Habermann N, Hofmann T, Klenow S, Sauer J. et al . Apple polyphenols modulate expression of selected genes related to toxicological defence and stress response in human colon adenoma cells.  Int J Cancer. 2008;  122 2647-55
  • 63 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease.  Int J Biochem Cell Biol. 2007;  39 44-84
  • 64 Eberhardt M V, Lee C Y, Liu R H. Antioxidant activity of fresh apples.  Nature. 2000;  405 903-4
  • 65 Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids.  J Agric Food Chem. 2001;  49 2774-9
  • 66 Wolfe K L, Liu R H. Apple peels as a value-added food ingredient.  J Agric Food Chem. 2003;  51 1676-83
  • 67 Lee K W, Kim Y J, Kim D O, Lee H J, Lee C Y. Major phenolics in apple and their contribution to the total antioxidant capacity.  J Agric Food Chem. 2003;  51 6516-20
  • 68 Chinnici F, Bendini A, Gaiani A, Riponi C. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition.  J Agric Food Chem. 2004;  52 4684-9
  • 69 McGhie T K, Hunt M, Barnett L E. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand.  J Agric Food Chem. 2005;  53 3065-70
  • 70 van der Sluis A A, Dekker M, Verkerk R, Jongen W M. An improved, rapid in vitro method to measure antioxidant activity. Application on selected flavonoids and apple juice.  J Agric Food Chem. 2000;  48 4116-22
  • 71 Vanzani P, Rossetto M, Rigo A, Vrhovsek U, Mattivi F, D'Amato E. et al . Major phytochemicals in apple cultivars: contribution to peroxyl radical trapping efficiency.  J Agric Food Chem. 2005;  53 3377-82
  • 72 Schaefer S, Baum M, Eisenbrand G, Dietrich H, Will F, Janzowski C. Polyphenolic apple juice extracts and their major constituents reduce oxidative damage in human colon cell lines.  Mol Nutr Food Res. 2006;  50 24-33
  • 73 McCann M J, Gill C I, G O B, Rao J R, McRoberts W C, Hughes P. et al . Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. .  Food Chem Toxicol. 2007;  45 1224-30
  • 74 D′Angelo S, Cimmino A, Raimo M, Salvatore A, Zappia V, Galletti P. Effect of reddening-ripening on the antioxidant activity of polyphenol extracts from cv. ’Annurca’ apple fruits.  J Agric Food Chem. 2007;  55 9977-85
  • 75 Shi D, Jiang B H. Antioxidant properties of apple juice and its protection against Cr(VI)-induced cellular injury.  J Environ Pathol Toxicol Oncol. 2002;  21 233-42
  • 76 Trosko J E, Tai M H. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.  Contrib Microbiol. 2006;  13 45-65
  • 77 Lee K W, Lee S J, Kang N J, Lee C Y, Lee H J. Effects of phenolics in Empire apples on hydrogen peroxide-induced inhibition of gap-junctional intercellular communication.  Biofactors. 2004;  21 361-5
  • 78 Ulrich C M, Bigler J, Potter J D. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics.  Nat Rev Cancer. 2006;  6 130-40
  • 79 Ahn K S, Sethi G, Aggarwal B B. Nuclear factor-kappa B: from clone to clinic.  Curr Mol Med. 2007;  7 619-37
  • 80 Davis P A, Polagruto J A, Valacchi G, Phung A, Soucek K, Keen C L. et al . Effect of apple extracts on NF-kappaB activation in human umbilical vein endothelial cells.  Exp Biol Med . 2006;  231 594-8
  • 81 Yoon H, Liu R H. Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells.  J Agric Food Chem. 2007;  55 3167-73
  • 82 Surh Y J. Cancer chemoprevention with dietary phytochemicals.  Nat Rev Cancer. 2003;  3 768-80
  • 83 Aggarwal B B, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer.  Biochem Pharmacol. 2006;  71 1397-421
  • 84 Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways.  Mol Nutr Food Res. 2008;  52 507-26
  • 85 Kern M, Tjaden Z, Ngiewih Y, Puppel N, Will F, Dietrich H. et al . Inhibitors of the epidermal growth factor receptor in apple juice extract.  Mol Nutr Food Res. 2005;  49 317-28
  • 86 Fridrich D, Kern M, Pahlke G, Volz N, Will F, Dietrich H. et al . Apple polyphenols diminish the phosphorylation of the epidermal growth factor receptor in HT29 colon carcinoma cells.  Mol Nutr Food Res. 2007;  51 594-601
  • 87 Gosse F, Guyot S, Roussi S, Lobstein A, Fischer B, Seiler N. et al . Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis.  Carcinogenesis. 2005;  26 1291-5
  • 88 Kern M, Pahlke G, Balavenkatraman K K, Bohmer F D, Marko D. Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells.  J Agric Food Chem. 2007;  55 4999-5006
  • 89 Kern M, Pahlke G, Ngiewih Y, Marko D. Modulation of key elements of the Wnt pathway by apple polyphenols.  J Agric Food Chem. 2006;  54 7041-6
  • 90 Yang G Y, Liao J, Kim K, Yurkow E J, Yang C S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols.  Carcinogenesis. 1998;  19 611-6
  • 91 Long L H, Clement M V, Halliwell B. Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media.  Biochem Biophys Res Commun. 2000;  273 50-3
  • 92 Lapidot T, Walker M D, Kanner J. Can apple antioxidants inhibit tumor cell proliferation? Generation of H2O2 during interaction of phenolic compounds with cell culture media.  J Agric Food Chem. 2002;  50 3156-60
  • 93 Liu R H, Sun J. Antiproliferative activity of apples is not due to phenolic-induced hydrogen peroxide formation.  J Agric Food Chem. 2003;  51 1718-23
  • 94 Veeriah S, Hofmann T, Glei M, Dietrich H, Will F, Schreier P. et al . Apple polyphenols and products formed in the gut differently inhibit survival of human cell lines derived from colon adenoma (LT97) and carcinoma (HT29).  J Agric Food Chem. 2007;  55 2892-900
  • 95 Waldecker M, Kautenburger T, Daumann H, Veeriah S, Will F, Dietrich H. et al . Histone-deacetylase inhibition and butyrate formation: Fecal slurry incubations with apple pectin and apple juice extracts.  Nutrition. 2008;  24 366-74
  • 96 Sengupta S, Muir J G, Gibson P R. Does butyrate protect from colorectal cancer?.  J Gastroenterol Hepatol. 2006;  21 209-18
  • 97 Davie J R. Inhibition of histone deacetylase activity by butyrate.  J Nutr. 2003;  133 2485S-93S
  • 98 Meier P, Finch A, Evan G. Apoptosis in development.  Nature. 2000;  407 796-801
  • 99 Vermeulen K, Van Bockstaele D R, Berneman Z N. Apoptosis: mechanisms and relevance in cancer.  Ann Hematol. 2005;  84 627-39
  • 100 Kisselev A F, Goldberg A L. Proteasome inhibitors: from research tools to drug candidates.  Chem Biol. 2001;  8 739-58
  • 101 Chen D, Milacic V, Chen M S, Wan S B, Lam W H, Huo C. et al . Tea polyphenols, their biological effects and potential molecular targets.  Histol Histopathol. 2008;  23 487-96
  • 102 Chen M S, Chen D, Dou Q P. Inhibition of proteasome activity by various fruits and vegetables is associated with cancer cell death.  In Vivo. 2004;  18 73-80
  • 103 Park S Y, Kim E J, Shin H K, Kwon D Y, Kim M S, Surh Y J. et al . Induction of apoptosis in HT-29 colon cancer cells by phloretin.  J Med Food. 2007;  10 581-6
  • 104 Gosse F, Roussi S, Guyot S, Schoenfelder A, Mann A, Bergerat J P. et al . Potentiation of apple procyanidin-triggered apoptosis by the polyamine oxidase inactivator MDL 72 527 in human colon cancer-derived metastatic cells.  Int J Oncol. 2006;  29 423-8
  • 105 Maldonado-Celis M E, Roussi S, Foltzer-Jourdainne C, Gosse F, Lobstein A, Habold C. et al . Modulation by polyamines of apoptotic pathways triggered by procyanidins in human metastatic SW620 cells.  Cell Mol Life Sci. 2008;  65 1425-34
  • 106 Miura T, Chiba M, Kasai K, Nozaka H, Nakamura T, Shoji T. et al . Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3.  Carcinogenesis. 2008;  29 585-93
  • 107 Hibasami H, Shohji T, Shibuya I, Higo K, Kanda T. Induction of apoptosis by three types of procyanidin isolated from apple (Rosaceae Malus pumila) in human stomach cancer KATO III cells.  Int J Mol Med. 2004;  13 795-9
  • 108 Ovesna Z, Vachalkova A, Horvathova K, Tothova D. Pentacyclic triterpenoic acids: new chemoprotective compounds.  Minirev Neoplasma. 2004;  51 327-33
  • 109 Balavenkatraman K K, Jandt E, Friedrich K, Kautenburger T, Pool-Zobel B L, Ostman A. et al . DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients.  Oncogene. 2006;  25 6319-24
  • 110 Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.  Nat Genet. 2003;  33 Suppl 245-54
  • 111 Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: The time is now. Crit Rev Oncol Hematol 2008; doi:10.1016/j.critrevonc.2008.03.001
  • 112 Fang M, Chen D, Yang C S. Dietary polyphenols may affect DNA methylation.  J Nutr. 2007;  137 223S-8S
  • 113 Fini L, Selgrad M, Fogliano V, Graziani G, Romano M, Hotchkiss E. et al . Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells.  J Nutr. 2007;  137 2622-8
  • 114 Percival S S, Bukowski J F, Milner J. Bioactive food components that enhance γδT cell function may play a role in cancer prevention.  J Nutr. 2008;  138 1-4
  • 115 Holderness J, Jackiw L, Kimmel E, Kerns H, Radke M, Hedges J F. et al . Select plant tannins induce IL-2Ralpha up-regulation and augment cell division in gammadelta T cells.  J Immunol. 2007;  179 6468-78
  • 116 Akiyama H, Sato Y, Watanabe T, Nagaoka M H, Yoshioka Y, Shoji T. et al . Dietary unripe apple polyphenol inhibits the development of food allergies in murine models.  FEBS Lett. 2005;  579 4485-91
  • 117 Graff J C, Jutila M A. Differential regulation of CD11b on γδT cells and monocytes in response to unripe apple polyphenols.  J Leukoc Biol. 2007;  82 603-7
  • 118 Ohnishi-Kameyama M, Yanagida A, Kanda T, Nagata T. Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry.  Rapid Commun Mass Spectrom. 1997;  11 31-6
  • 119 Akazome Y. Characteristics and physiological functions of polyphenols from apples.  Biofactors. 2004;  22 311-4
  • 120 Shoji T, Akazome Y, Kanda T, Ikeda M. The toxicology and safety of apple polyphenol extract.  Food Chem Toxicol. 2004;  42 959-67
  • 121 Ding M, Lu Y, Bowman L, Huang C, Leonard S, Wang L. et al . Inhibition of AP-1 and neoplastic transformation by fresh apple peel extract.  J Biol Chem. 2004;  279 10 670-6
  • 122 Liu R H, Liu J, Chen B. Apples prevent mammary tumors in rats.  J Agric Food Chem. 2005;  53 2341-3
  • 123 Miura D, Miura Y, Yagasaki K. Effect of apple polyphenol extract on hepatoma proliferation and invasion in culture and on tumor growth, metastasis, and abnormal lipoprotein profiles in hepatoma-bearing rats.  Biosci Biotechnol Biochem. 2007;  71 2743-50
  • 124 Barth S W, Fahndrich C, Bub A, Dietrich H, Watzl B, Will F. et al . Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats.  Carcinogenesis. 2005;  26 1414-21
  • 125 Oszmianski J, Wolniak M, Wojdylo A, Wawer I. Comparative study of polyphenolic content and antiradical activity of cloudy and clear apple juices.  J Sci Food Agric. 2007;  87 573-9
  • 126 Barth S W, Faehndrich C, Bub A, Watzl B, Will F, Dietrich H. et al . Cloudy apple juice is more effective than apple polyphenols and an apple juice derived cloud fraction in a rat model of colon carcinogenesis.  J Agric Food Chem. 2007;  55 1181-7
  • 127 Ohkami H, Tazawa K, Yamashita I, Shimizu T, Murai K, Kobashi K. et al . Effects of apple pectin on fecal bacterial enzymes in azoxymethane-induced rat colon carcinogenesis.  Jpn J Cancer Res. 1995;  86 523-9
  • 128 Pan L, Zessner H, Will F, Klimo K, Frank N, Dietrich H. et al . et al. Natural cloudy apple juice and a polyphenol-enriched apple juice extract prevent intestinal adenoma formation in the App (Min/+) model for colon cancer prevention.  Cancer Epidemiol Biomarkers Prev. 2005;  14 2715s
  • 129 Gerhauser C. Chemoprävention von Krebs. Forum Deutsche Krebsgesellschaft 2007; Sonderheft 2007: Fokus Prävention: 5-8
  • 130 Goodlad R A. Fiber can make your gut grow.  Nutrition. 2007;  23 434-5
  • 131 Mandir N, Englyst H, Goodlad R A. Resistant carbohydrates stimulate cell proliferation and crypt fission in wild-type mice and in the Apc mouse model of intestinal cancer, association with enhanced polyp development. Br J Nutr 2008: 1-11
  • 132 Owen R W, Thompson M H, Hill M J, Wilpart M, Mainguet P, Roberfroid M. The importance of the ratio of lithocholic to deoxycholic acid in large bowel carcinogenesis.  Nutr Cancer. 1987;  9 67-71
  • 133 Shimizu J, Yamada N, Nakamura K, Takita T, Innami S. Effects of different types of dietary fiber preparations isolated from bamboo shoots, edible burdock, apple and corn on fecal steroid profiles of rats.  J Nutr Sci Vitaminol (Tokyo). 1996;  42 527-39
  • 134 Will F, Bauckhage K, Dietrich H. Apple pomace liquefaction with pectinases and cellulases: analytical data of the corresponding juices.  Eur Food Res Technol. 2000;  211 291-7
  • 135 Mehrlander K, Dietrich H, Sembries S, Dongowski G, Will F. Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction.  J Agric Food Chem. 2002;  50 1230-6
  • 136 Sembries S, Dongowski G, Jacobasch G, Mehrlander K, Will F, Dietrich H. Effects of dietary fibre-rich juice colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats.  Br J Nutr. 2003;  90 607-15
  • 137 Sembries S, Dongowski G, Mehrlander K, Will F, Dietrich H. Dietary fiber-rich colloids from apple pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion of steroids in rats.  J Nutr Biochem. 2004;  15 296-302
  • 138 Sembries , Dongowski G, Mehrlander K, Will F, Dietrich H. Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats.  J Agric Food Chem. 2006;  54 10 269-80
  • 139 Aprikian O, Duclos V, Guyot S, Besson C, Manach C, Bernalier A. et al . Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats.  J Nutr. 2003;  133 1860-5
  • 140 Ko S H, Choi S W, Ye S K, Cho B L, Kim H S, Chung M H. Comparison of the antioxidant activities of nine different fruits in human plasma.  J Med Food. 2005;  8 41-6
  • 141 Chrzczanowicz J, Gawron A, Zwolinska A, de Graft-Johnson J, Krajewski W, Krol M. et al . Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity – possible application in clinical studies on dietary antioxidants.  Clin Chem Lab Med. 2008;  46 342-9
  • 142 Maffei F, Tarozzi A, Carbone F, Marchesi A, Hrelia S, Angeloni C. et al . Relevance of apple consumption for protection against oxidative damage induced by hydrogen peroxide in human lymphocytes.  Br J Nutr. 2007;  97 921-7
  • 143 Briviba K, Stracke B A, Rufer C E, Watzl B, Weibel F P, Bub A. Effect of consumption of organically and conventionally produced apples on antioxidant activity and DNA damage in humans.  J Agric Food Chem. 2007;  55 7716-21
  • 144 Mayer B, Schumacher M, Brandstatter H, Wagner F S, Hermetter A. High-throughput fluorescence screening of antioxidative capacity in human serum.  Anal Biochem. 2001;  297 144-53
  • 145 Lotito S B, Frei B. Relevance of apple polyphenols as antioxidants in human plasma: contrasting in vitro and in vivo effects.  Free Radic Biol Med. 2004;  36 201-11
  • 146 Lotito S B, Frei B. The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids.  Free Radic Biol Med. 2004;  37 251-8
  • 147 Lotito S B, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?.  Free Radic Biol Med. 2006;  41 1727-46
  • 148 Hoffmann R G, Lim H J. Observational study design.  Methods Mol Biol. 2007;  404 19-31
  • 149 Feskanich D, Ziegler R G, Michaud D S, Giovannucci E L, Speizer F E, Willett W C. et al . Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women.  J Natl Cancer Inst. 2000;  92 1812-23
  • 150 Arts I C, Hollman P C, Bueno De Mesquita H B, Feskens E J, Kromhout D. Dietary catechins and epithelial cancer incidence: the Zutphen elderly study.  Int J Cancer. 2001;  92 298-302
  • 151 Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A. et al . Flavonoid intake and risk of chronic diseases.  Am J Clin Nutr. 2002;  76 560-8
  • 152 Le Marchand L, Murphy S P, Hankin J H, Wilkens L R, Kolonel L N. Intake of flavonoids and lung cancer.  J Natl Cancer Inst. 2000;  92 154-60
  • 153 Michels K B, Giovannucci E, Chan A T, Singhania R, Fuchs C S, Willett W C. Fruit and vegetable consumption and colorectal adenomas in the Nurses' Health Study.  Cancer Res. 2006;  66 3942-53
  • 154 Deneo-Pellegrini H, De Stefani E, Ronco A. Vegetables, fruits, and risk of colorectal cancer: a case-control study from Uruguay.  Nutr Cancer. 1996;  25 297-304
  • 155 Lee S Y, Choi K Y, Kim M K, Kim K M, Lee J H, Meng K H. et al . [The relationship between intake of vegetables and fruits and colorectal adenoma-carcinoma sequence].  Korean J Gastroenterol. 2005;  45 23-33
  • 156 Gallus S, Talamini R, Giacosa A, Montella M, Ramazzotti V, Franceschi S. et al . Does an apple a day keep the oncologist away?.  Ann Oncol. 2005;  16 1841-4
  • 157 Theodoratou E, Kyle J, Cetnarskyj R, Farrington S M, Tenesa A, Barnetson R. et al . Dietary flavonoids and the risk of colorectal cancer.  Cancer Epidemiol Biomarkers Prev. 2007;  16 684-93
  • 158 Lindblad P, Wolk A, Bergstrom R, Adami H O. Diet and risk of renal cell cancer: a population-based case-control study.  Cancer Epidemiol Biomarkers Prev. 1997;  6 215-23

Dr. Clarissa Gerhäuser

Deutsches Krebsforschungszentrum (DKFZ)

Toxikologie und Krebsrisikofaktoren

Im Neuenheimer Feld 280

9120 Heidelberg

Germany

Phone: +49-6221-42-3306

Fax: +49-6221-42-3359

Email: c.gerhauser@dkfz.de

    >