Synlett 2014; 25(11): 1534-1538
DOI: 10.1055/s-0033-1341248
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Pyridine- and 2-Oxazoline-Functionalized Vinyl Polymers by Alane-Based Frustrated Lewis Pairs

Jianghua He
a   Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA   Fax: +1(970)4911801   Email: eugene.chen@colostate.edu
,
Yuetao Zhang
a   Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA   Fax: +1(970)4911801   Email: eugene.chen@colostate.edu
b   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Eugene Y.-X. Chen*
a   Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA   Fax: +1(970)4911801   Email: eugene.chen@colostate.edu
› Author Affiliations
Further Information

Publication History

Received: 16 February 2014

Accepted after revision: 04 April 2014

Publication Date:
28 April 2014 (online)


Abstract

Reported herein is the first example of polymerization of polar vinyl monomers bearing the C=C–C=N functionality by Frustrated Lewis pairs (FLPs). In particular, FLPs based on Al(C6F5)3 and N-heterocyclic carbenes rapidly convert 2-vinyl pyridine and 2-isopropenyl-2-oxazoline into medium to high molecular weight, N-functionalized vinyl polymers. Activated monomer-alane adduct 1 and initiated zwitterionic intermediate 2 have been isolated and structurally characterized, providing strong evidence for the proposed bimolecular, activated monomer polymerization mechanism.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Frustrated Lewis Pairs I & II. In Topics in Current Chemistry. Vols. 332 & 334. Stephan DW, Erker G. Springer; New York: 2013
    • 1b Erker G. Pure Appl. Chem. 2012; 84: 2203
    • 1c Stephan DW. Org. Biomol. Chem. 2012; 10: 5740
    • 1d Erker G. Dalton Trans. 2011; 40: 7475
    • 1e Stephan DW, Erker G. Angew. Chem. Int. Ed. 2010; 49: 46
    • 1f Stephan DW. Dalton Trans. 2009; 3129
    • 1g Stephan DW. Org. Biomol. Chem. 2008; 6: 1535

      For selected recent examples, see:
    • 2a Hounjet LJ, Bannwarth C, Garon CN, Caputo CB, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2013; 52: 7492
    • 2b Ménard G, Hatnean JA, Cowley HJ, Lough AJ, Rawson JM, Stephan DW. J. Am. Chem. Soc. 2013; 135: 6446
    • 2c Dobrovetsky R, Stephan DW. J. Am. Chem. Soc. 2013; 135: 4974
    • 2d Chernichenko K, Madarász A, Pápai I, Nieger M, Leskelä M, Repo T. Nat. Chem. 2013; 5: 718
    • 2e Sajid M, Elmer L.-M, Rosorius C, Daniliuc CG, Grimme S, Kehr G, Erker G. Angew. Chem. Int. Ed. 2013; 52: 2243
    • 2f Sajid M, Kehr G, Wiegand T, Eckert H, Schwickert C, Pöttgen R, Cardenas AJ. P, Warren TH, Fröhlich R, Daniliuc CG, Erker G. J. Am. Chem. Soc. 2013; 135: 8882
    • 2g Appelt C, Slootweg JC, Lammertsma K, Uhl W. Angew. Chem. Int. Ed. 2013; 52: 4256
  • 3 Chen EY.-X. Top. Curr. Chem. 2013; 334: 239
    • 4a Zhang Y, Miyake GM, John MG, Falivene L, Caporaso L, Cavallo L, Chen EY.-X. Dalton Trans. 2012; 41: 9119
    • 4b Zhang Y, Miyake GM, Chen EY.-X. Angew. Chem. Int. Ed. 2010; 49: 10158
  • 5 Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J. Am. Chem. Soc. 2013; 135: 13306
  • 6 Sajid M, Stute A, Cardenas AJ. P, Culotta BJ, Hepperle JA. M, Warren TH, Schirmer B, Grimme S, Studer A, Daniliuc CG, Fröhlich R, Petersen JL, Kehr G, Erker G. J. Am. Chem. Soc. 2012; 134: 10156
  • 7 Xu T, Chen EY.-X. J. Am. Chem. Soc. 2014; 136: 1774
    • 8a Barz M, Luxenhofer R, Zentel R, Vicent MJ. Polym. Chem. 2011; 2: 1900
    • 8b Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV. J. Controlled Release 2011; 153: 73
    • 8c Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM. Bioconjugate Chem. 2011; 22: 976
    • 8d Knop K, Hoogenboom R, Fischer D, Schubert US. Angew. Chem. Int. Ed. 2010; 49: 6288
    • 8e Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Biomaterials 2010; 31: 4972
    • 8f Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A. Macromol. Rapid Commun. 2010; 31: 511
    • 8g Hoogenboom R. Angew. Chem. Int. Ed. 2009; 48: 7978
    • 8h Adams N, Schubert US. Adv. Drug Delivery Rev. 2007; 59: 1504
    • 8i Tomalia DA, Thill BP, Fazio MJ. Polym. J. 1980; 12: 661
    • 9a Weber C, Neuwirth T, Kempe K, Ozkahraman B, Tamahkar E, Mert H, Becer CR, Schubert US. Macromolecules 2012; 45: 20
    • 9b Zhang N, Huber S, Schulz A, Luxenhofer R, Jordan R. Macromolecules 2009; 42: 2215
  • 10 Tomalia DA, Thill BP, Fazio MJ. Polym. J. 1980; 12: 661
  • 11 Zhang N, Salzinger S, Soller BS, Rieger B. J. Am. Chem. Soc. 2013; 135: 8810
  • 12 Kaneko H, Nagae H, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2011; 133: 19626
  • 13 Inoue and co-workers first reported the concept of acceleration in anionic polymerization of MMA via steric separation of the nucleophile and the bulky aluminum Lewis acid. See: Kuroki M, Watanabe T, Aida T, Inoue S. J. Am. Chem. Soc. 1991; 113: 6903
  • 14 See the Supporting Information for experimental and characterization details.
  • 15 Chakraborty D, Chen EY.-X. Inorg. Chem. Commun. 2002; 5: 698
  • 16 Selected crystallographic data for 1: C25H7AlF15N, monoclinic, space group P2(1)/c, a = 10.6644(4) Å, b = 14.0645(5) Å, c = 16.5182(6) Å, β = 107.349(2)°, V = 2364.84(15) Å3, Z = 4, D calcd = 1.779 Mg/m3, GOF = 1.051, R 1 = 0.0243 [I >2σ(I)], wR2 = 0.0659. CCDC 972837 contains the supplementary crystallographic data for this structure.
  • 17 Selected crystallographic data for 2·CH2Cl2: C37H29AlCl2F15N3, monoclinic, space group P2(1)/c, a = 11.6507(7) Å, b = 16.8033(10) Å, c = 19.1096(12) Å, β = 94.747(3)°, V = 3728.3 (4) Å3, Z = 4, D calcd = 1.601 Mg/m3, GOF = 1.060, R 1 = 0.0512 [I >2σ(I)], wR2 = 0.1482. CCDC 972835 contains the supplementary crystallographic data for this structure.