Planta Med 2015; 81(02): 160-166
DOI: 10.1055/s-0034-1383403
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cytotoxic Cytochalasins from Marine-Derived Fungus Arthrinium arundinis

Junfeng Wang
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Zhen Wang
2   Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Zhiran Ju
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Junting Wan
2   Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Shengrong Liao
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Xiuping Lin
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Tianyu Zhang
2   Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Xuefeng Zhou
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Hao Chen
3   Key Laboratory of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration Republic of China, Qingdao, P. R. China
,
Zhengchao Tu
2   Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China
,
Yonghong Liu
1   CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
› Author Affiliations
Further Information

Publication History

received 04 June 2014
revised 19 October 2014

accepted 16 November 2014

Publication Date:
27 January 2015 (online)

Abstract

Four new cytochalasins, arthriniumnins A–D (14), a new natural product, ketocytochalasin (5), as well as five known cytochalasin analogues (610) were isolated and identified from the fungus Arthrinium arundinis ZSDS1-F3 from the sponge Phakellia fusca. Their structures were elucidated by NMR spectroscopic and mass spectrometric analyses, as well as single crystal X-ray diffraction. Compounds 6 and 9 showed cytotoxicity against K562, A549, Huh-7, H1975, MCF-7, U937, BGC823, HL60, Hela, and MOLT-4 cell lines, with IC50 values ranging from 1.13 to 47.4 µM.

Supporting Information

 
  • References

  • 1 Carter SB. Effects of cytochalasins on mammalian cells. Nature 1967; 213: 261-264
  • 2 Mizel SB, Wilson L. Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J Biol Chem 1972; 247: 4102-4105
  • 3 Edwards RL, Maitland DJ, Whalley AJS. Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill. J Chem Soc Perkin Trans 1 1989; 57: 57-65
  • 4 Cimmino A, Andolfi A, Berestetskiy A, Evidente A. Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J Agric Food Chem 2008; 56: 6304-6309
  • 5 Scherlach K, Boettger D, Remme N, Hertweck C. The chemistry and biology of cytochalasans. Nat Prod Rep 2010; 27: 869-886
  • 6 Flanagan MD, Lin S. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem 1980; 255: 835-838
  • 7 Brown SS, Spudich JA. Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 1981; 88: 487-491
  • 8 Cooper JA. Effects of cytochalasin and phalloidin on actin. J Cell Biol 1987; 105: 1473-1478
  • 9 Brase S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 2009; 109: 3903-3990
  • 10 Schumann J, Hertweck C. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 2007; 129: 9564-9565
  • 11 Vedejs E, Campbell JB, Gadwood RC, Rodgers JD, Spear KL, Watanabe Y. Synthesis of the cytochalasin D isoindolone unit: solutions to the problem of regiochemistry in N-benzoylpyrrolinone Diels-Alder reactions. J Org Chem 1982; 47: 1534-1546
  • 12 Ebada SS, Schulz B, Wray V, Totzke F, Kubbutat MHG, Muller WEG, Hamacher A, Kassack MU, Lin WH, Proksch P. Arthrinins A–D: novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorg Med Chem 2011; 19: 4644-4651
  • 13 Tsukada M, Fukai M, Miki K, Shiraishi T, Suzuki T, Nishio K, Sugita T, Ishino M, Kinoshita K, Takahashi K, Shiro M, Koyama K. Chemical constituents of a marine fungus, Arthrinium sacchari . J Nat Prod 2011; 74: 1645-1649
  • 14 Wang JF, Xu FQ, Wang Z, Lu X, Wan JT, Yang B, Zhou XF, Zhang TY, Tu ZC, Liu YH. A new naphthalene glycoside from the sponge-derived fungus Arthrinium sp. ZSDS1-F3. Nat Prod Res 2014; 28: 1070-1074
  • 15 Zhang HW, Zhang J, Hu S, Zhang ZJ, Zhu CJ, Ng SW, Tan RX. Ardeemins and cytochalasins from Aspergillus terreus residing in Artemisia annua . Planta Med 2010; 76: 1616-1621
  • 16 Liu R, Gu QQ, Zhu WM, Cui CB, Fan GT, Fang YC, Zhu TJ, Liu HB. 10-phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the marine-derived fungus Spicaria elegans . J Nat Prod 2006; 69: 871-875
  • 17 Lin ZJ, Zhang GJ, Zhu TJ, Liu R, Wei HJ, Gu QQ. Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius . Helv Chim Acta 2009; 92: 1538-1544
  • 18 Flack HD. On enantiomorph-polarity estimation. Acta Cryst 1983; A39: 876-881
  • 19 Buchanan MS, Hashimoto T, Asakawa Y. Cytochalasins from a Daldinia sp. of fungus. Phytochemistry 1996; 41: 821-828
  • 20 Hu YC, Dietrich D, Xu W, Patel A, Thuss JAJ, Wang JJ, Yin WB, Qiao KJ, Houk KN, Vederas JC, Tang Y. A carbonate-forming Baeyer-Villiger monooxygenase. Nat Chem Biol 2014; 31: 552-554
  • 21 Feng YJ, Blunt JW, Cole ALJ, Munro MHG. Three novel cytochalasins X, Y, and Z from Pseudeurotium zonatum . J Nat Prod 2002; 65: 1274-1277
  • 22 Sekita S, Yoshihira K, Natori S. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. IV. Carbon-13 nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem Pharm Bull 1983; 31: 490-498
  • 23 Minato H, Katayama T, Matsumoto M, Katagiri K, Matsuura S, Sunagawa N, Hori K, Harada M, Takeuchi M. Structure-activity relationships among zygosporin derivatives. Chem Pharm Bull 1973; 21: 2268-2277
  • 24 Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113: 3516-3604
  • 25 Chan K, Knaak T, Satkamp L, Humbert O, Falkow S, Ramakrishnan L. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc Natl Acad Sci USA 2002; 99: 3920-3925
  • 26 Changsen C, Franzblau SG, Palittapongarnpim P. Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob Agents Chemother 2003; 47: 3682-3687