Planta Med 2015; 81(05): 382-387
DOI: 10.1055/s-0035-1545721
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antichlamydial Sterol from the Red Sea Sponge Callyspongia aff. implexa

Usama Ramadan Abdelmohsen
1   Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
5   Permanent address: Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
,
Cheng Cheng
1   Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
,
Anastasija Reimer
2   Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
,
Vera Kozjak-Pavlovic
2   Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
,
Amany K. Ibrahim
3   Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
,
Thomas Rudel
2   Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
,
Ute Hentschel
1   Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
,
RuAngelie Edrada-Ebel
4   Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
,
Safwat A. Ahmed
3   Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
› Author Affiliations
Further Information

Publication History

received 12 September 2014
revised 10 January 2015

accepted 24 January 2015

Publication Date:
17 March 2015 (online)

Abstract

Marine sponges are rich sources of natural products exhibiting diverse biological activities. Bioactivity-guided fractionation of the Red Sea sponge Callyspongia aff. implexa led to the isolation of two new compounds, 26,27-bisnorcholest-5,16-dien-23-yn-3β,7α-diol, gelliusterol E (1) and C27-polyacetylene, callimplexen A (2), in addition to the known compound β-sitosterol (3). The structures of the isolated compounds were determined by 1D- and 2D-NMR techniques as well as high-resolution tandem mass spectrometry and by comparison to the literature. The three compounds (13) were tested against Chlamydia trachomatis, an obligate intracellular gram-negative bacterium, which is the leading cause of ocular and genital infections worldwide. Only gelliusterol E (1) inhibited the formation and growth of chlamydial inclusions in a dose-dependent manner with an IC50 value of 2.3 µM.

Supporting Information

 
  • References

  • 1 Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association – a review. Mar Drugs 2010; 8: 1417-1468
  • 2 Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol 2006; 55: 167-177
  • 3 Hertiani T, Edrada-Ebel R, Ortlepp S, van Soest RW, de Voogd NJ, Wray V, Hentschel U, Kozytska S, Müller WE, Proksch P. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg Med Chem 2010; 18: 1297-1311
  • 4 Mol VPL, Raveendran TV, Parameswaran PS. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int Biodeter Biodegr 2009; 63: 67-72
  • 5 Faulkner DJ. Marine natural products. Nat Prod Rep 2002; 19: 1-48
  • 6 Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2005; 22: 15-61
  • 7 Proksch P, Putz A, Ortlepp S, Kjer J, Bayer M. Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 2010; 9: 475-489
  • 8 Laport MS, Santos OCS, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 2009; 10: 86-105
  • 9 Tsukamoto S, Kato H, Hirota H, Fusetani N. Seven new polyacetylene derivatives, showing both potent metamorphosis-inducing activity in ascidian larvae and antifouling activity against barnacle larvae, from the marine sponge Callyspongia truncate . J Nat Prod 1997; 60: 126-130
  • 10 Youssef D, van Soest R, Fusetani N. New polyacetylenic alcohols with cytotoxic activity from the Red Sea sponge Callyspongia sp. J Nat Prod 2003; 66: 679-687
  • 11 Uno M, Ohta S, Ohta E, Ikegami S. Callyspongins A and B: novel polyacetylene sulfates from the marine Callyspongia truncate . J Nat Prod 1996; 59: 1146-1148
  • 12 Sera Y, Adachi K, Shizuri Y. A new epidioxy sterol as an antifouling substance from a Palauan marine sponge, Lendenfeldia chondrodes . J Nat Prod 1999; 62: 152-154
  • 13 Youssef DT, Ibrahim AK, Khalifa SI, Mesbah MK, Mayer AM, van Soest RW. New anti-inflammatory sterols from the two Red Sea sponges Scalarispongia species and Callyspongia siphonella . Nat Prod Commun 2009; 5: 27-31
  • 14 Somani J, Bhullar VB, Workowski KA, Farshy CE, Black CM. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 2000; 181: 1421-1427
  • 15 Stephens RS. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 2003; 11: 44-51
  • 16 Ray KJ, Zhou ZX, Cevallos V, Chin S, Enanoria W, Lui F, Lietman TM, Porco TC. Estimating community prevalence of ocular Chlamydia trachomatis infection using pooled polymerase chain reaction testing. Ophthal Epidemiol 2014; 21: 86-91
  • 17 Fan H. Blindness-causing trachomatous trichiasis biomarkers sighted. Invest Ophthalmol Vis Sci 2012; 53: 2560
  • 18 Ratnam S, Jang D, Gilchrist J, Smieja M, Poirier A, Hatchette T, Flandin JF, Chernesky M. Workflow and maintenance characteristics of five automated laboratory instruments for the diagnosis of sexually transmitted infections. J Clin Microbiol 2014; 52: 2299-2304
  • 19 Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. Future Microbiol 2010; 5: 1427-1442
  • 20 Sharma M, Rudel T. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death?. FEMS Immunol Med Microbiol 2009; 55: 154-161
  • 21 Beatty WL, Morrison RP, Byrne GI. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 1994; 58: 686-699
  • 22 Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004; 72: 1843-1855
  • 23 Salin O, Alakurtti S, Pohjala L, Siiskonen A, Maass V, Maass M, Yli-Kauhaluoma J, Vuorela P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae . Biochem Pharmacol 2010; 80: 1141-1151
  • 24 Horan AC, Shearer MC, Hedge V, Beyazova ML, Brodsky BC, King A, Berrie R, Cardaci K, Nimeck M. A family of novel macrocyclic lactones, the saccharocarcins produced by Saccharothrix aerocolonigenes subsp. antibiotica. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 1997; 50: 119-125
  • 25 Gallimore WA, Kelly M, Scheuer PJ. Gelliusterols A–D, new acetylenic sterols from a sponge, Gellius species. J Nat Prod 2001; 64: 741-744
  • 26 Hesse M, Meier H, Zeeh B. Spektroskopische Methoden in der organischen Chemie. 3rd. ed. Stuttgart: Thieme Verlag; 1987: 36
  • 27 Umeyama A, Nagano C, Arihara S. Three novel C-21 polyacetylenes from the marine sponge Callyspongia sp. J Nat Prod 1997; 60: 131-133
  • 28 Carballeira NM, Shalabi F. Novel brominated phospholipid fatty acids from the Caribbean sponge Petrosia sp. J Nat Prod 1993; 56: 739-746
  • 29 Wylie JL, Hatch GM, McClarty G. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis . J Bacteriol 1997; 179: 7233-7242
  • 30 Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, Steele-Mortimer O, Heinzen RA. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 2013; 9: e1003107
  • 31 Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 2011; 7: e1002258