Planta Med 2007; 73(6): 591-596
DOI: 10.1055/s-2007-967188
Natural Product Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Biocatalysis of the Anticancer Sipholane Triterpenoids

Sandeep Jain1 , Amit Shirode1 , Shenouda Yacoub1 , Ashley Barbo1 , Paul W. Sylvester1 , Eric Huntimer2 , Fathi Halaweish2 , Khalid A. El Sayed1
  • 1College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA
  • 2Department of Chemistry, South Dakota State University, Brookings, SD, USA
Further Information

Publication History

Received: December 20, 2006 Revised: March 9, 2007

Accepted: March 13, 2007

Publication Date:
07 May 2007 (online)

Abstract

The Red Sea sponge Callyspongia (= Siphonochalina) siphonella is a rich source of sipholane triterpenoids. Biocatalysis of the major sipholanes, sipholenol A (1) and sipholenone A (2), respectively, by Mucor ramannianus ATCC 9628 and Cunninghamella elegans ATCC 7929 afforded four new metabolites 3 - 6 along with sipholenol G and 28-hydroxysipholenol A. Major sipholanes along with their biocatalytic products were investigated for their antiproliferative activity against the highly malignant +SA mouse mammary epithelial cell line. Sipholenone A (2) was the most active sipholane inhibiting +SA cell proliferation with an IC50 value of 20 - 30 μM. Sipholenone A, also, showed cytotoxicity against MCF-7 at a dose of 0.9 μM and antiangiogenic activity in the CAM (chorio-allantoic membrane) assay. This is the first report on anticancer activity of these triterpenoids.

References

  • 1 Clark A M, McChesney J D, Hufford C D. The use of microorganisms for the study of drug metabolism.  Med Res Rev. 1985;  5 231-53.
  • 2 El Sayed K A, Hamann M T, Waddling C A, Jensen C, Lee S K, Dunstan C A. et al . Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation.  J Org Chem. 1998;  63 7449-55.
  • 3 El Sayed K A, Yousaf M, Hamann M T, Avery M A, Kelly M, Wipf P. Microbial and chemical transformation studies of the bioactive marine sesquiterpene S (+)-curcuphenol and curcudiol from a deep reef collection of the Jamaican sponge Didicus oxeata .  J Nat Prod. 2002;  65 1547-53.
  • 4 Thayer A M. Enzymes at work: Rapid screening and optimization of enzymatic activity, along with available easy-to-use enzymes, are making biocatalysis a handy tool for chiral synthesis.  Chem Eng News. 2006;  84 16-25.
  • 5 Newman D J, Cragg G M. Marine natural products and related compounds in clinical and advanced preclinical trials.  J Nat Prod. 2004;  67 1216-38.
  • 6 Shmueli U, Carmely S, Groweiss A, Kashman Y. Sipholenol and sipholenone, two new triterpenes from the marine sponge Siphonochalina siphonella (Levi).  Tetrahedron Lett. 1981;  22 709-12.
  • 7 Carmely S, Kashman Y. The sipholanes: a novel group of triterpenes from the marine sponge Siphonochalina siphonella .  J Org Chem. 1983;  48 3517-25.
  • 8 Carmely S, Loya Y, Kashman Y. Siphonellinol, a new triterpene from the marine sponge Siphonochalina siphonella .  Tetrahedron Lett. 1983;  24 3673-6.
  • 9 Carmely S, Kashman Y. Neviotine-A, a new triterpene from the Red Sea sponge Siphonochalina siphonella .  J Org Chem. 1986;  51 784-8.
  • 10 Kashman Y, Yosief T, Carmeli S. New triterpenoids from the Red Sea sponge Siphonochalina siphonella .  J Nat Prod. 2001;  64 175-80.
  • 11 Jain S, Laphookhieo S, Shi Z, Fu L, Akiyama S, Chen Z. et al .Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod, in press.
  • 12 Rudi A, Aknin M, Gaydou E M, Kashman Y. Sodwanones K, L, and M; new triterpenes from the marine sponge Axinella weltneri .  J Nat Prod. 1997;  60 700-3.
  • 13 Funel-Le Bon C, Berrue F, Thomas O P, Reyes F, Amade P. Sodwanone S, a triterpene from the marine sponge Axinella weltneri .  J Nat Prod. 2005;  68 1284-7.
  • 14 Dai J, Fishback J A, Zhou Y, Nagle D G. Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells.  J Nat Prod. 2006;  69 1715-20.
  • 15 Mabjeesh N J, Willard M T, Frederickson C E, Zhong H, Simons J W. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3’-kinase/protein kinase B in prostate cancer cells.  Clin Cancer Res. 2003;  9 2416-25.
  • 16 McIntyre B S, Briski K P, Gapor A, Sylvester P W. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells.  Proc Soc Exp Biol Med. 2000;  224 292-301.
  • 17 Sylvester P W, Shah S J. Mechanisms mediating the antiproliferative and apoptotic effects of vitamin E in mammary cancer cells.  Front Biosci. 2005;  10 699-709.
  • 18 Carmely S, Kashman Y. The study of sipholanes by two-dimensional NMR spectroscopy.  Magn Reson Chem. 1986;  24 332-6.
  • 19 West D C, Thompson W D, Sells P G, Burbridge M F. Angiogenesis assays using chick chorioallantoic membrane. In: Murray JC, editor Angiogenesis Protocols. Totowa; Humana Press 2001: 107-29.

Prof. Dr. Khalid El Sayed

Department of Basic Pharmaceutical Sciences

College of Pharmacy

University of Louisiana at Monroe

700 University Avenue

Monroe

Louisiana 71209

USA

Phone: +1-318-342-1725

Fax: +1-318-342-1737

Email: elsayed@ulm.edu

>