Structural and electrical characteristics of chemical vapor deposited (CVD) diamond films have been studied as a function of film thickness. The samples comprise a set of codeposited, nominally undoped diamond films with average grain size on the growth surface increasing linearly with the film thickness. Raman scattering analysis reveals a decrease of nondiamond phase and intragrain defects with increasing film thickness. Temperature dependent dc conductivity results indicate that, as the film thickness increases, the Fermi level moves towards the valence band. There is a corresponding decrease in the density of states at the Fermi level, as deduced from the space-charge-limited current in the bulk of the samples. The spatial variation in the density of states through the material closely reflects the changes observed in the structural and electrical properties of the films. Such characteristic has the implication on the application of CVD diamond in the area of electronics.

1.
M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).
2.
W. Adam et al., Electroc. Soc. 5th Symposium on Diamond Materials Proc. (1998), p. 491.
3.
H.
Yoneda
,
K.
Ueda
,
Y.
Aikawa
,
K.
Baba
, and
N.
Shohata
,
J. Appl. Phys.
83
,
1730
(
1998
).
4.
M. A.
Plano
,
S.
Zhao
,
C. F.
Gardinier
,
M. I.
Landstrass
, and
D. R.
Kania
,
Appl. Phys. Lett.
64
,
193
(
1994
).
5.
Y.
Aikawa
,
K.
Baba
,
N.
Shohata
,
H.
Yoneda
, and
K.
Ueda
,
Diamond Relat. Mater.
5
,
737
(
1996
).
6.
A.
Maden
,
P. G.
Le Comber
, and
W. E.
Spear
,
J. Non-Cryst. Solids
20
,
239
(
1976
).
7.
M.
Hirose
,
T.
Suzuki
, and
G. H.
Dohler
,
Appl. Phys. Lett.
34
,
234
(
1979
).
8.
J. D.
Cohen
,
D. V.
Lang
, and
J. P.
Harbison
,
Phys. Rev. Lett.
45
,
197
(
1980
).
9.
J.
Mort
,
M. A.
Machonkin
, and
K.
Okumura
,
Appl. Phys. Lett.
59
,
455
(
1991
).
10.
Y.
Matsumae
,
Y.
Akiba
,
Y.
Hirose
,
T.
Kurosu
, and
M.
Iida
,
Jpn. J. Appl. Phys., Part 2
33
,
L702
(
1994
).
11.
A.
Van der Drift
,
Philips Res. Rep.
22
,
267
(
1967
).
12.
R. E.
Shroder
,
R. J.
Nemanich
, and
J. T.
Glass
,
Phys. Rev. B
41
,
3738
(
1990
).
13.
X.
Jiang
and
C. L.
Jia
,
Appl. Phys. Lett.
69
,
3902
(
1996
).
14.
J. W.
Ager
III
,
D. K.
Veirs
, and
G. M.
Rosenblatt
,
Phys. Rev. B
43
,
6491
(
1991
).
15.
Y.
Muto
,
T.
Sugino
,
K.
Kobashi
, and
J.
Shirafuji
,
Jpn. J. Appl. Phys., Part 2
31
,
L4
(
1992
).
16.
T.
Sugino
,
Y.
Muto
,
K.
Karasutani
,
J.
Shirafuji
, and
K.
Kobashi
,
Diamond Relat. Mater.
2
,
803
(
1993
).
17.
J.
Vandersande
and
L.
Zoltan
,
Surf. Coat. Technol.
47
,
392
(
1991
).
18.
K.
Okumura
,
J.
Mort
, and
M. A.
Machonkin
,
Appl. Phys. Lett.
57
,
1907
(
1990
).
19.
E. P.
Visser
,
G. J.
Bauhuis
,
G.
Janssen
,
W.
Vollenberg
,
W. J. P.
van Enckevort
, and
L. J.
Giling
,
J. Phys.: Condens. Matter
4
,
7365
(
1992
).
20.
A. T. Collins and E. C. Lightowlers, in The Properties of Diamond, edited by J. E. Fields (Academic, London, 1979).
21.
H. Overhof and P. Thomas, Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, Berlin, 1989).
22.
R.
Meaudre
,
M.
Meaudre
,
P.
Jensen
, and
G.
Guiirard
,
Philos. Mag. Lett.
6
,
315
(
1988
).
23.
A.
Rose
,
Phys. Rev.
97
,
1538
(
1955
).
24.
M. A.
Lampert
,
Phys. Rev.
103
,
1648
(
1956
).
25.
W.
Den Böer
,
J. Phys. (Paris), Colloq.
42
,
451
(
1981
).
26.
I.
Solomon
,
R.
Benferat
, and
H.
Tran-Quoc
,
Phys. Rev. B
30
,
3422
(
1984
).
27.
M.
Nesladek
,
K.
Meykens
, and
L. M.
Stals
,
Phys. Rev. B
54
,
5552
(
1996
).
28.
R. L.
Weisfield
,
J. Appl. Phys.
54
,
6401
(
1983
).
29.
S.
Nespurek
and
J.
Sworakowski
,
J. Appl. Phys.
51
,
2098
(
1980
).
30.
K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
This content is only available via PDF.
You do not currently have access to this content.