Anatase titania-coated bismuth ferrite nanocomposites (BiFeO3/TiO2) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO3/TiO2 structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO3TiO2 nanopowders. The core-shell structured BiFeO3/TiO2 nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light (λ>400nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holes effectively. The obtained BiFeO3/TiO2 nanocomposites can be used as potential visible-light driven photocatalysts.

1.
A.
Fujishima
and
K.
Honda
,
Nature (London)
37
,
238
(
1972
).
2.
M. R.
Hoffmann
,
S. T.
Martin
,
W.
Choi
, and
D. W.
Bahnemann
,
Chem. Rev. (Washington, D.C.)
95
,
69
(
1995
).
3.
M. A.
Fox
and
M. T.
Dulay
,
Chem. Rev. (Washington, D.C.)
93
,
341
(
1993
).
4.
W.
Choi
,
A.
Termin
, and
M. R.
Hoffmann
,
Angew. Chem.
106
,
1148
(
1994
).
5.
V. H.
Houlding
and
M.
Graetzel
,
J. Am. Chem. Soc.
105
,
5695
(
1983
).
6.
R.
Asahi
,
T.
Morikawa
,
T.
Ohwaki
,
K.
Aoki
, and
Y.
Taga
,
Science
293
,
269
(
2001
).
7.
W.
Choi
,
A.
Termin
, and
M. R.
Hoffmann
,
J. Phys. Chem.
98
,
13669
(
1994
).
8.
N.
Serpone
,
P.
Maruthamuthu
,
P.
Pichat
,
E.
Pelizzetti
, and
H.
Hidaka
,
J. Photochem. Photobiol., A
85
,
247
(
1995
).
9.
R.
Brahimi
,
Y.
Bessekhouad
,
A.
Bouguelia
, and
M.
Trari
,
Catal. Today
122
,
62
(
2007
).
10.
G.
Marci
,
V.
Augugliaro
,
M. J.
López-Muñoz
,
C.
Martin
,
L.
Palmisano
,
V.
Rives
,
M.
Schiavello
,
R. J. D.
Tilley
, and
A. M.
Venezia
,
J. Phys. Chem. B
105
,
1026
(
2001
).
11.
I.
Pastoriza-Santos
,
D. S.
Koktysh
,
A. A.
Mamedov
,
M.
Giersig
,
N. A.
Kotov
, and
L. M.
Liz-Marzán
,
Langmuir
16
,
2731
(
2000
).
12.
Y. -H.
Lin
,
Q.
Jiang
,
Y.
Wang
,
C. -W.
Nan
,
L.
Chen
, and
J.
Yu
,
Appl. Phys. Lett.
90
,
172507
(
2007
).
13.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spal-din
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
,
Science
299
,
1719
(
2003
).
14.
J.
Lou
and
P. A.
Maggard
,
Adv. Mater. (Weinheim, Ger.)
18
(
4
),
514
(
2006
).
15.
F.
Gao
,
Y.
Yuan
,
K. F.
Wang
,
X. Y.
Chen
,
F.
Chen
,
J. -M.
Liu
, and
Z. F.
Ren
,
Appl. Phys. Lett.
89
,
102506
(
2006
).
16.
F.
Gao
,
X. Y.
Chen
,
K. B.
Yin
,
S.
Dong
,
Z. F.
Ren
,
F.
Yuan
,
T.
Yu
,
Z. G.
Zou
, and
J. -M.
Liu
,
Adv. Mater. (Weinheim, Ger.)
19
,
2889
(
2007
).
17.
S.
Li
,
Y. -H.
Lin
,
B. -P.
Zhang
, and
C. -W.
Nan
,
J. Appl. Phys.
(unpublished).
18.
N.
Kakuta
,
J. M.
White
,
A. J.
Bard
,
A.
Campion
,
M. A.
Fox
,
S. E.
Webber
, and
M.
Finlayson
,
J. Phys. Chem.
89
,
48
(
1985
).
19.
Y. G.
Wang
,
G.
Xu
,
Z. H.
Ren
,
X.
Wei
,
W. J.
Weng
,
P. Y.
Du
,
G.
Shen
, and
G. R.
Han
,
J. Am. Ceram. Soc.
90
,
2615
(
2007
).
20.
JCPDS Card No. 71-1166.
21.
JCPDS Card No. 86-1518.
22.
M. A.
Butler
,
J. Appl. Phys.
48
,
1914
(
1977
).
23.
K.
Nagaveni
,
M. S.
Hegde
, and
G.
Madras
,
J. Phys. Chem. B
108
,
20204
(
2004
).
24.
I.
Moriguchi
,
A. H.
Maed
,
Y.
Teraoka
, and
S.
Kagawas
,
J. Am. Chem. Soc.
117
,
1139
(
1995
).
25.
A. H.
Nethercot
,
Phys. Rev. Lett.
33
,
1088
(
1974
).
26.
M. A.
Butler
and
D. S.
Ginley
,
J. Electrochem. Soc.
125
,
228
(
1978
).
27.
Y.
Kim
,
S. J.
Atherton
,
E. S.
Brigham
, and
T. E.
Mallouk
,
J. Phys. Chem.
97
,
11802
(
1993
).
28.
M.
Tomkiewicz
and
H.
Fay
,
Appl. Phys. (Berlin)
18
,
1
(
1979
).
You do not currently have access to this content.