Parasitic capacitance has increasing implications on the programming performance of phase change random access memory (PCRAM) devices due to increased scaling and high frequency operation. PCRAM devices with larger parasitic capacitance were found to require higher applied voltage to amorphize due to a larger leakage current. The quenching time is also increased due to a longer voltage fall time during amorphization, resulting in a partially crystallized amorphous state. This partial amorphous state requires a lower applied voltage for crystallization, which means improved crystallization performance at the expense of amorphization. Multilevel devices could be implemented by varying the parasitic capacitance to achieve different amorphous resistance.

1.
S.
Lai
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
255
.
2.
D.
Adler
,
M.
Shur
, and
S. R.
Ovshinsky
,
J. Appl. Phys.
51
,
3289
(
1980
).
3.
W. J.
Wang
,
L. P.
Shi
,
R.
Zhao
,
K. G.
Lim
,
H. K.
Lee
,
T. C.
Chong
, and
Y. H.
Wu
,
Appl. Phys. Lett.
93
,
043121
(
2008
).
4.
A.
Khakifirooz
and
D. A.
Antoniadis
,
Proceedings of the -38th European Solid-State Device Research Conference (ESSDERC 2008)
,
2008
(unpublished) p.
30
.
5.
M.
Soyuer
,
IEEE J. Solid-state Circuits
26
,
889
(
1991
).
6.
D.
Ielmini
,
D.
Mantegazza
,
A. L.
Lacaita
,
A.
Pirovano
, and
F.
Pellizzer
,
Proceedings of the IEEE Electron Devices Letters
,
2005
(unpublished), Vol.
26
, pp.
799
801
.
7.
M.
Nardone
,
V. G.
Karpov
,
D. C. S.
Jackson
, and
I. V.
Karpov
,
Appl. Phys. Lett.
94
,
103509
(
2009
).
8.
V. G.
Karpov
,
Y. A.
Kryukov
,
I. V.
Karpov
, and
M.
Mitra
,
Phys. Rev. B
78
,
052201
(
2008
).
9.
D.
Mantegazza
,
D.
Ielmini
,
A.
Pirovano
,
A. L.
Lacaita
,
E.
Varesi
,
F.
Pellizzer
,
R.
Bez
,
Solid-State Electron.
52
,
584
(
2008
).
10.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
, and
N.
Akahira
,
J. Appl. Phys.
69
,
2849
(
1991
).
11.
M.
Gill
,
T.
Lowrey
, and
J.
Park
,
Proceedings of the IEEE Int. Solid-State Circuits Conf Dig. Tech. Pap
,
2002
(unpublished), Vol
1
, p.
202
.
12.
T. E.
Kolding
,
IEEE Trans. Electron Devices
47
,
734
(
2000
).
13.
M.
Avrami
,
J. Chem. Phys.
7
,
1103
(
1939
).
14.
M.
Avrami
,
J. Chem. Phys.
8
,
212
(
1940
).
15.
M.
Avrami
,
J. Chem. Phys.
9
,
177
(
1941
).
16.
H.
Minemura
,
H.
Andoh
,
N.
Tsuboi
,
Y.
Maeda
, and
Y.
Sato
,
J. Appl. Phys.
67
,
2731
(
1990
).
17.
E. G.
Yeo
,
R.
Zhao
,
L. P.
Shi
,
K. G.
Lim
,
T. C.
Chong
, and
I.
Adesida
,
Appl. Phys. Lett.
94
,
243504
(
2009
).
18.
B.
Gleixner
,
A.
Pirovano
,
J.
Sarkar
,
F.
Ottogalli
,
E.
Tortorelli
,
M.
Tosi
, and
R.
Bez
,
IEEE Int. Reliab. Phys. Symp. Proc.
2007
,
542
.
19.
Y. H.
Shih
,
J. Y.
Wu
,
B.
Rajendran
,
M. H.
Lee
,
R.
Cheek
,
M.
Lamorey
,
M.
Breitwisch
,
Y.
Zhu
,
E. K.
Lai
,
C. F.
Chen
,
E.
Stinzianni
,
A.
Schrott
,
E.
Joseph
,
R.
Dasaka
,
S.
Raoux
,
H. L.
Lung
and
C.
Lam
,
Proceedings of the International Electron Devices Meeting
,
2008
(unpublished) p.
4
.
You do not currently have access to this content.