The photoresponse blueshift of the n-type conversion region for n+-on-pHg0.722Cd0.278Te infrared photodiode is numerically investigated by considering the conduction band nonparabolic characteristic and band gap narrowing effect. It has been shown that the photoresponse position of the n-type conversion region shifts remarkably toward high energy. The shift energy is 37 meV higher than that of the p region. The result can be used to explain quantitatively the recent experimental observation of the blueshift of the photoluminescence peak for the n-type conversion region. The following three contributions are considered: (i) the Burstein–Moss shift considering a nonparabolic conduction band, (ii) the band gap narrowing effect, and (iii) the Hg-vacancy-induced acceptor trap level. It is concluded that the band gap narrowing and nonparabolic effects play an important role in the photoresponse of n+-on-p HgCdTe infrared photodiode with heavy doping concentration.

1.
L. T.
Claiborne
,
Proc. SPIE
2999
,
94
(
1997
).
2.
S. C.
Shen
,
Microelectron. J.
25
,
713
(
1994
).
3.
J. M.
Dell
,
J.
Antoszewski
,
M. H.
Rais
,
C.
Musca
,
J. K.
White
,
B. D.
Nener
, and
L.
Faraone
,
J. Electron. Mater.
29
,
841
(
2000
).
4.
F. X.
Zha
,
J.
Shao
,
J.
Jiang
, and
W. Y.
Yang
,
Appl. Phys. Lett.
90
,
201112
(
2007
).
5.
N. H.
Jo
,
S. D.
Yoo
,
B. G.
Ko
,
S. W.
Lee
,
J.
Jang
,
S. D.
Lee
, and
K. D.
Kwack
,
Proc. SPIE
3436
,
50
(
1998
).
6.
Device simulator SENTAURUS DEVICE (former ISE-DESSIS) Ver. 2007. 03.
7.
Y.
Nemirovsky
and
E.
Finkman
,
J. Appl. Phys.
50
,
8107
(
1979
).
8.
J. H.
Chu
,
Physics of Narrow Band Semiconductors
(
Science
,
Beijing, China
,
2005
), p.
283
.
9.
F. L.
Madarasz
and
F.
Szmulowicz
,
J. Appl. Phys.
58
,
2770
(
1985
).
10.
D. H.
Mao
,
H. G.
Robinson
,
D. U.
Bartholomew
, and
C. R.
Helms
,
J. Electron. Mater.
26
,
678
(
1997
).
11.
J.
Lowney
,
D.
Seiler
,
C.
Ltter
, and
I.
Yoon
,
J. Appl. Phys.
71
,
1253
(
1992
).
12.
H. B.
Bebb
and
C. R.
Ratliff
,
J. Appl. Phys.
42
,
3189
(
1971
).
13.
V.
Ariel-Altschul
,
E.
Finkman
, and
G.
Bahir
,
IEEE Trans. Electron Devices
39
,
1312
(
1992
).
14.
S.
Gupta
,
R. K.
Bhan
, and
V.
Dhar
,
Infrared Phys. Technol.
51
,
259
(
2008
).
15.
R. A.
Abram
,
G. J.
Rees
, and
B. L. H.
Wilson
,
Adv. Phys.
27
,
799
(
1978
).
16.
J. C.
Li
,
M.
Sokolich
,
T.
Hussain
, and
P. M.
Asbeck
,
Solid-State Electron.
50
,
1440
(
2006
).
17.
U.
Lindefelt
,
J. Appl. Phys.
84
,
2628
(
1998
).
18.
M. K.
Hudait
,
P.
Modak
,
S.
Hardikar
, and
S. B.
Krupanidhi
,
J. Appl. Phys.
82
,
4931
(
1997
).
19.
M. K.
Hudait
,
P.
Modak
,
K. S. R. K.
Rao
, and
S. B.
Krupanidhi
,
Mater. Sci. Eng., B
57
,
62
(
1998
).
20.
I. -H.
Lee
,
J. J.
Lee
,
P.
Kung
,
F. J.
Sanchez
, and
M.
Razeghi
,
Appl. Phys. Lett.
74
,
102
(
1999
).
21.
H. C.
Yang
,
T. Y.
Lin
,
M. Y.
Huang
, and
Y. F.
Chen
,
J. Appl. Phys.
86
,
6124
(
1999
).
22.
J. D.
Ye
,
S. L.
Gu
,
S. M.
Zhu
,
S. M.
Liu
,
Y. D.
Zheng
,
R.
Zhang
, and
Y.
Shi
,
Appl. Phys. Lett.
86
,
192111
(
2005
).
23.
K. J.
Kim
and
Y. R.
Park
,
Appl. Phys. Lett.
78
,
475
(
2001
).
24.
S. C.
Jain
,
J. M.
McGregor
, and
D. J.
Roulston
,
J. Appl. Phys.
68
,
3747
(
1990
).
25.
26.
D.
Auvergne
,
J.
Camassel
, and
H.
Mathieu
,
Phys. Rev. B
11
,
2251
(
1975
).
27.
28.
T. S.
Moss
,
Proc. Phys. Soc. London, Sect. B
67
,
775
(
1954
).
29.
F. Y.
Yue
,
J.
Shao
,
X.
,
W.
Huang
,
J. H.
Chu
,
J.
Wu
,
X.
Lin
, and
L.
He
,
Appl. Phys. Lett.
89
,
021912
(
2006
).
30.
B.
Li
,
Y. S.
Gui
,
Z. H.
Chen
,
H. J.
Ye
, and
J. H.
Chu
,
Appl. Phys. Lett.
73
,
1538
(
1998
).
31.
J. H.
Chu
,
Physics of Narrow Band Semiconductors
(
Science
,
Beijing, China
,
2005
), p.
237
.
32.
J. H.
Chu
,
D. R.
Qian
, and
D. Y.
Tang
,
Phys. Scr., T
T14
,
37
(
1986
).
You do not currently have access to this content.